DNA: Dynamic Network Augmentation

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Dec 17, 2021), p. n/a
Autore principale: Mahan, Scott
Altri autori: Doster, Tim, Kvinge, Henry
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 2611834890
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2611834890 
045 0 |b d20211217 
100 1 |a Mahan, Scott 
245 1 |a DNA: Dynamic Network Augmentation 
260 |b Cornell University Library, arXiv.org  |c Dec 17, 2021 
513 |a Working Paper 
520 3 |a In many classification problems, we want a classifier that is robust to a range of non-semantic transformations. For example, a human can identify a dog in a picture regardless of the orientation and pose in which it appears. There is substantial evidence that this kind of invariance can significantly improve the accuracy and generalization of machine learning models. A common technique to teach a model geometric invariances is to augment training data with transformed inputs. However, which invariances are desired for a given classification task is not always known. Determining an effective data augmentation policy can require domain expertise or extensive data pre-processing. Recent efforts like AutoAugment optimize over a parameterized search space of data augmentation policies to automate the augmentation process. While AutoAugment and similar methods achieve state-of-the-art classification accuracy on several common datasets, they are limited to learning one data augmentation policy. Often times different classes or features call for different geometric invariances. We introduce Dynamic Network Augmentation (DNA), which learns input-conditional augmentation policies. Augmentation parameters in our model are outputs of a neural network and are implicitly learned as the network weights are updated. Our model allows for dynamic augmentation policies and performs well on data with geometric transformations conditional on input features. 
653 |a Geometric transformation 
653 |a Classification 
653 |a Neural networks 
653 |a Machine learning 
653 |a Data search 
653 |a Policies 
653 |a Data augmentation 
700 1 |a Doster, Tim 
700 1 |a Kvinge, Henry 
773 0 |t arXiv.org  |g (Dec 17, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2611834890/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2112.09277