Indoor Emergency Path Planning Based on the Q-Learning Optimization Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:ISPRS International Journal of Geo-Information vol. 11, no. 1 (2022), p. 66
Autor principal: Xu, Shenghua
Otros Autores: Gu, Yang, Li, Xiaoyan, Chen, Cai, Hu, Yingyi, Yu, Sang, Jiang, Wenxing
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2621283696
003 UK-CbPIL
022 |a 2220-9964 
024 7 |a 10.3390/ijgi11010066  |2 doi 
035 |a 2621283696 
045 2 |b d20220101  |b d20221231 
084 |a 231472  |2 nlm 
100 1 |a Xu, Shenghua  |u Chinese Academy of Surveying and Mapping, Beijing 100830, China; <email>xushh@casm.ac.cn</email> 
245 1 |a Indoor Emergency Path Planning Based on the Q-Learning Optimization Algorithm 
260 |b MDPI AG  |c 2022 
513 |a Journal Article 
520 3 |a The internal structure of buildings is becoming increasingly complex. Providing a scientific and reasonable evacuation route for trapped persons in a complex indoor environment is important for reducing casualties and property losses. In emergency and disaster relief environments, indoor path planning has great uncertainty and higher safety requirements. Q-learning is a value-based reinforcement learning algorithm that can complete path planning tasks through autonomous learning without establishing mathematical models and environmental maps. Therefore, we propose an indoor emergency path planning method based on the Q-learning optimization algorithm. First, a grid environment model is established. The discount rate of the exploration factor is used to optimize the Q-learning algorithm, and the exploration factor in the ε-greedy strategy is dynamically adjusted before selecting random actions to accelerate the convergence of the Q-learning algorithm in a large-scale grid environment. An indoor emergency path planning experiment based on the Q-learning optimization algorithm was carried out using simulated data and real indoor environment data. The proposed Q-learning optimization algorithm basically converges after 500 iterative learning rounds, which is nearly 2000 rounds higher than the convergence rate of the Q-learning algorithm. The SASRA algorithm has no obvious convergence trend in 5000 iterations of learning. The results show that the proposed Q-learning optimization algorithm is superior to the SARSA algorithm and the classic Q-learning algorithm in terms of solving time and convergence speed when planning the shortest path in a grid environment. The convergence speed of the proposed Q- learning optimization algorithm is approximately five times faster than that of the classic Q- learning algorithm. The proposed Q-learning optimization algorithm in the grid environment can successfully plan the shortest path to avoid obstacle areas in a short time. 
653 |a Environment models 
653 |a Disaster relief 
653 |a Casualties 
653 |a Indoor environments 
653 |a Planning 
653 |a Algorithms 
653 |a Maps 
653 |a Evacuations & rescues 
653 |a Mathematical models 
653 |a Robots 
653 |a Unmanned aerial vehicles 
653 |a Machine learning 
653 |a Emergencies 
653 |a Convergence 
653 |a Efficiency 
653 |a Discount rates 
653 |a Exploration 
653 |a Iterative methods 
653 |a Experiments 
653 |a Optimization 
653 |a Disasters 
653 |a Learning 
653 |a Evacuation routing 
653 |a Optimization algorithms 
653 |a Shortest path planning 
653 |a Artificial intelligence 
653 |a Path planning 
700 1 |a Gu, Yang  |u Nantong Export-Oriented Agricultural Comprehensive Development Zone, Nantong 226000, China 
700 1 |a Li, Xiaoyan  |u School of Geomatics, Liaoning Technical University, Fuxin 123008, China; <email>472120757@stu.lntu.edu.cn</email> 
700 1 |a Chen, Cai  |u School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China; <email>chencai@casm.ac.cn</email> (C.C.); <email>2021220411@jou.edu.cn</email> (Y.H.); <email>ss2021@jou.edu.cn</email> (Y.S.) 
700 1 |a Hu, Yingyi  |u School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China; <email>chencai@casm.ac.cn</email> (C.C.); <email>2021220411@jou.edu.cn</email> (Y.H.); <email>ss2021@jou.edu.cn</email> (Y.S.) 
700 1 |a Yu, Sang  |u School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China; <email>chencai@casm.ac.cn</email> (C.C.); <email>2021220411@jou.edu.cn</email> (Y.H.); <email>ss2021@jou.edu.cn</email> (Y.S.) 
700 1 |a Jiang, Wenxing  |u Faculty of Geosciences and Environment Engineering, Southwest Jiontong University, Chengdu 611756, China; <email>jiangwenxing@stu.cdut.edu.cn</email> 
773 0 |t ISPRS International Journal of Geo-Information  |g vol. 11, no. 1 (2022), p. 66 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2621283696/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2621283696/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2621283696/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch