An exploratory analysis: extracting materials science knowledge from unstructured scholarly data

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:The Electronic Library vol. 39, no. 3 (2021), p. 469-485
Egile nagusia: Zhao, Xintong
Beste egile batzuk: Greenberg, Jane, Meschke, Vanessa, Toberer, Eric, Hu, Xiaohua
Argitaratua:
Emerald Group Publishing Limited
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 2634110433
003 UK-CbPIL
022 |a 0264-0473 
022 |a 1758-616X 
024 7 |a 10.1108/EL-11-2020-0320  |2 doi 
035 |a 2634110433 
045 2 |b d20210501  |b d20210630 
084 |a 36136  |2 nlm 
100 1 |a Zhao, Xintong  |u Department of Information Science, Metadata Research Center, Drexel University, Philadelphia, Pennsylvania, USA 
245 1 |a An exploratory analysis: extracting materials science knowledge from unstructured scholarly data 
260 |b Emerald Group Publishing Limited  |c 2021 
513 |a Journal Article 
520 3 |a Purpose>The output of academic literature has increased significantly due to digital technology, presenting researchers with a challenge across every discipline, including materials science, as it is impossible to manually read and extract knowledge from millions of published literature. The purpose of this study is to address this challenge by exploring knowledge extraction in materials science, as applied to digital scholarship. An overriding goal is to help inform readers about the status knowledge extraction in materials science.Design/methodology/approach>The authors conducted a two-part analysis, comparing knowledge extraction methods applied materials science scholarship, across a sample of 22 articles; followed by a comparison of HIVE-4-MAT, an ontology-based knowledge extraction and MatScholar, a named entity recognition (NER) application. This paper covers contextual background, and a review of three tiers of knowledge extraction (ontology-based, NER and relation extraction), followed by the research goals and approach.Findings>The results indicate three key needs for researchers to consider for advancing knowledge extraction: the need for materials science focused corpora; the need for researchers to define the scope of the research being pursued, and the need to understand the tradeoffs among different knowledge extraction methods. This paper also points to future material science research potential with relation extraction and increased availability of ontologies.Originality/value>To the best of the authors’ knowledge, there are very few studies examining knowledge extraction in materials science. This work makes an important contribution to this underexplored research area. 
653 |a Big Data 
653 |a Deep learning 
653 |a Materials science 
653 |a Ontology 
653 |a Publications 
653 |a Knowledge 
653 |a Neural networks 
653 |a Medical research 
653 |a Web Ontology Language-OWL 
653 |a Researchers 
653 |a Academic publications 
653 |a Unstructured data 
653 |a Semantics 
653 |a Extraction 
653 |a Academic disciplines 
653 |a Literary criticism 
653 |a Research 
653 |a Geographic Location 
653 |a Indexing 
653 |a Mineralogy 
653 |a Journal Articles 
653 |a Research Design 
653 |a Natural Language Processing 
653 |a Knowledge Level 
653 |a Comparative Analysis 
653 |a Language Processing 
653 |a Organic Chemistry 
653 |a Metallurgy 
653 |a Cognitive Structures 
653 |a Semiotics 
653 |a Logical Thinking 
653 |a Algorithms 
700 1 |a Greenberg, Jane  |u Department of Information Science, Metadata Research Center, Drexel University, Philadelphia, Pennsylvania, USA 
700 1 |a Meschke, Vanessa  |u Department of Physics, Colorado School of Mines, Golden, Colorado, USA 
700 1 |a Toberer, Eric  |u Department of Physics, Colorado School of Mines, Golden, Colorado, USA 
700 1 |a Hu, Xiaohua  |u Department of Information Science, Metadata Research Center, Drexel University, Philadelphia, Pennsylvania, USA 
773 0 |t The Electronic Library  |g vol. 39, no. 3 (2021), p. 469-485 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2634110433/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2634110433/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2634110433/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch