Onlinemeta: A Web Server for Meta-Analysis Based on Shiny Framework

Guardado en:
Detalles Bibliográficos
Publicado en:bioRxiv (Feb 14, 2025)
Autor principal: Dai, Weiyuntian
Otros Autores: Yi, Yonglin, Lin, Anqi, Zhou, Chaozheng, Zhang, Jian, Wang, Shixiang, Sun, Min, Luo, Peng
Publicado:
Cold Spring Harbor Laboratory Press
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Meta-analysis is a common statistical method used to summarize multiple studies that cover the same topic. It can provide less biased results and explain heterogeneity between studies. Although there exists a variety of meta-analysis softwares, they are rarely both convenient to use and capable of comprehensive analytical functions. As a result, we are motivated to establish a meta-analysis web tool called Meta-Analysis Online (Onlinemeta). Onlinemeta includes three major modules: risk bias analysis, meta-analysis and network meta-analysis. The risk bias analysis module can produce heatmaps and histograms, whereas the meta-analysis module accepts many types of data as input, including dichotomous variables, single-armed dichotomous variables, continuous variables, single-armed continuous variables, survival data, deft method and diagnostic experiments, and outputs well-tuned forest plots, sensitivity analysis forest plots, funnel plots, comparison table of effects, SROC curve, and crosshair plots. For network meta-analysis module, the tool can process dichotomous variables or continuous variables, and generate network plots, forest plots, SUCRA (Surface Under the Cumulative Ranking) plots, rank plots and heatmaps. Onlinemeta is available at https://smuonco.Shinyapps.io/Onlinemeta/.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Figures revised to correct order and placement.* https://smuonco.Shinyapps.io/Onlinemeta/
ISSN:2692-8205
DOI:10.1101/2022.04.13.488126
Fuente:Biological Science Database