Passport: Improving Automated Formal Verification Using Identifiers

Spremljeno u:
Bibliografski detalji
Izdano u:arXiv.org (Aug 2, 2022), p. n/a
Glavni autor: Sanchez-Stern, Alex
Daljnji autori: First, Emily, Zhou, Timothy, Kaufman, Zhanna, Brun, Yuriy, Ringer, Talia
Izdano:
Cornell University Library, arXiv.org
Teme:
Online pristup:Citation/Abstract
Full text outside of ProQuest
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 2654699434
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1145/3593374  |2 doi 
035 |a 2654699434 
045 0 |b d20220802 
100 1 |a Sanchez-Stern, Alex 
245 1 |a Passport: Improving Automated Formal Verification Using Identifiers 
260 |b Cornell University Library, arXiv.org  |c Aug 2, 2022 
513 |a Working Paper 
520 3 |a Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than making the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq model with three new encoding mechanisms for identifiers: category vocabulary indexing, subword sequence modeling, and path elaboration. We compare Passport to three existing base tools which Passport can enhance: ASTactic, Tac, and Tok. In head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools. Combining the three Passport-enhanced tools automatically proves 38% more theorems than the three base tools together, without Passport's enhancements. Finally, together, these base tools and Passport-enhanced tools prove 45% more theorems than the combined base tools without Passport's enhancements. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof synthesis, leading to higher-quality software. 
653 |a Software quality 
653 |a Theorems 
653 |a Automation 
653 |a Machine learning 
653 |a Synthesis 
653 |a Tools 
700 1 |a First, Emily 
700 1 |a Zhou, Timothy 
700 1 |a Kaufman, Zhanna 
700 1 |a Brun, Yuriy 
700 1 |a Ringer, Talia 
773 0 |t arXiv.org  |g (Aug 2, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2654699434/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2204.10370