xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture Radar Imagery

保存先:
書誌詳細
出版年:arXiv.org (Nov 5, 2022), p. n/a
第一著者: Fernando, Paolo
その他の著者: Tsu-ting, Tim Lin, Gupta, Ritwik, Goodman, Bryce, Patel, Nirav, Kuster, Daniel, Kroodsma, David, Dunnmon, Jared
出版事項:
Cornell University Library, arXiv.org
主題:
オンライン・アクセス:Citation/Abstract
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 2672837911
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2672837911 
045 0 |b d20221105 
100 1 |a Fernando, Paolo 
245 1 |a xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture Radar Imagery 
260 |b Cornell University Library, arXiv.org  |c Nov 5, 2022 
513 |a Working Paper 
520 3 |a Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems. Identifying vessels that do not show up in conventional monitoring systems -- known as ``dark vessels'' -- is key to managing and securing the health of marine environments. With the rise of satellite-based synthetic aperture radar (SAR) imaging and modern machine learning (ML), it is now possible to automate detection of dark vessels day or night, under all-weather conditions. SAR images, however, require a domain-specific treatment and are not widely accessible to the ML community. Maritime objects (vessels and offshore infrastructure) are relatively small and sparse, challenging traditional computer vision approaches. We present the largest labeled dataset for training ML models to detect and characterize vessels and ocean structures in SAR imagery. xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission that are, on average, 29,400-by-24,400 pixels each. The images are annotated using a combination of automated and manual analysis. Co-located bathymetry and wind state rasters accompany every SAR image. We also provide an overview of the xView3 Computer Vision Challenge, an international competition using xView3-SAR for ship detection and characterization at large scale. We release the data (\href{https://iuu.xview.us/}{https://iuu.xview.us/}) and code (\href{https://github.com/DIUx-xView}{https://github.com/DIUx-xView}) to support ongoing development and evaluation of ML approaches for this important application. 
653 |a Computer vision 
653 |a Weather 
653 |a Marine resources 
653 |a Automation 
653 |a Machine learning 
653 |a Radar imaging 
653 |a Vessels 
653 |a Marine environment 
653 |a Synthetic aperture radar 
700 1 |a Tsu-ting, Tim Lin 
700 1 |a Gupta, Ritwik 
700 1 |a Goodman, Bryce 
700 1 |a Patel, Nirav 
700 1 |a Kuster, Daniel 
700 1 |a Kroodsma, David 
700 1 |a Dunnmon, Jared 
773 0 |t arXiv.org  |g (Nov 5, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2672837911/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2206.00897