Performance Analysis of Optimized Versatile Video Coding Software Decoders on Embedded Platforms

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:arXiv.org (Jun 30, 2022), p. n/a
Tác giả chính: Saha, Anup
Tác giả khác: Hamidouche, Wassim, Chavarrías, Miguel, Gautier, Guillaume, Pescador, Fernando, Farhat, Ibrahim
Được phát hành:
Cornell University Library, arXiv.org
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full text outside of ProQuest
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 2682961829
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2682961829 
045 0 |b d20220630 
100 1 |a Saha, Anup 
245 1 |a Performance Analysis of Optimized Versatile Video Coding Software Decoders on Embedded Platforms 
260 |b Cornell University Library, arXiv.org  |c Jun 30, 2022 
513 |a Working Paper 
520 3 |a In recent years, the global demand for high-resolution videos and the emergence of new multimedia applications have created the need for a new video coding standard. Hence, in July 2020 the Versatile Video Coding (VVC) standard was released providing up to 50% bit-rate saving for the same video quality compared to its predecessor High Efficiency Video Coding (HEVC). However, this bit-rate saving comes at the cost of a high computational complexity, particularly for live applications and on resource-constraint embedded devices. This paper presents two optimized VVC software decoders, named OpenVVC and Versatile Video deCoder (VVdeC), designed for low resources platforms. They exploit optimization techniques such as data level parallelism using Single Instruction Multiple Data (SIMD) instructions and functional level parallelism using frame, tile and slice-based parallelisms. Furthermore, a comparison in terms of decoding run time, energy and memory consumption between the two decoders is presented while targeting two different resource-constraint embedded devices. The results showed that both decoders achieve real-time decoding of Full High definition (FHD) resolution over the first platform using 8 cores and High-definition (HD) real-time decoding for the second platform using only 4 cores with comparable results in terms of average consumed energy: around 26 J and 15 J for the 8 cores and 4 cores embedded platforms, respectively. Regarding the memory usage, OpenVVC showed better results with less average maximum memory consumed during run time compared to VVdeC. 
653 |a Parallel processing 
653 |a Software 
653 |a Decoders 
653 |a Decoding 
653 |a Electronic devices 
653 |a Optimization techniques 
653 |a Optimization 
653 |a Embedded systems 
653 |a Coding standards 
653 |a Platforms 
653 |a Real time 
653 |a Video compression 
653 |a Coding 
653 |a High definition 
653 |a Run time (computers) 
653 |a Multimedia 
700 1 |a Hamidouche, Wassim 
700 1 |a Chavarrías, Miguel 
700 1 |a Gautier, Guillaume 
700 1 |a Pescador, Fernando 
700 1 |a Farhat, Ibrahim 
773 0 |t arXiv.org  |g (Jun 30, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2682961829/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2206.15311