A Hybrid Service Selection and Composition for Cloud Computing Using the Adaptive Penalty Function in Genetic and Artificial Bee Colony Algorithm

Guardado en:
Bibliografiske detaljer
Udgivet i:Sensors vol. 22, no. 13 (2022), p. 4873
Hovedforfatter: Seyed Salar Sefati
Andre forfattere: Halunga, Simona
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2686103039
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s22134873  |2 doi 
035 |a 2686103039 
045 2 |b d20220101  |b d20221231 
084 |a 231630  |2 nlm 
100 1 |a Seyed Salar Sefati 
245 1 |a A Hybrid Service Selection and Composition for Cloud Computing Using the Adaptive Penalty Function in Genetic and Artificial Bee Colony Algorithm 
260 |b MDPI AG  |c 2022 
513 |a Journal Article 
520 3 |a The rapid development of Cloud Computing (CC) has led to the release of many services in the cloud environment. Service composition awareness of Quality of Service (QoS) is a significant challenge in CC. A single service in the cloud environment cannot respond to the complex requests and diverse requirements of the real world. In some cases, one service cannot fulfill the user’s needs, so it is necessary to combine different services to meet these requirements. Many available services provide an enormous QoS and selecting or composing those combined services is called an Np-hard optimization problem. One of the significant challenges in CC is integrating existing services to meet the intricate necessities of different types of users. Due to NP-hard complexity of service composition, many metaheuristic algorithms have been used so far. This article presents the Artificial Bee Colony and Genetic Algorithm (ABCGA) as a metaheuristic algorithm to achieve the desired goals. If the fitness function of the services selected by the Genetic Algorithm (GA) is suitable, a set of services is further introduced for the Artificial Bee Colony (ABC) algorithm to choose the appropriate service from, according to each user’s needs. The proposed solution is evaluated through experiments using Cloud SIM simulation, and the numerical results prove the efficiency of the proposed method with respect to reliability, availability, and cost. 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Software services 
653 |a Quality of service 
653 |a Methods 
653 |a Cloud computing 
653 |a Energy consumption 
700 1 |a Halunga, Simona 
773 0 |t Sensors  |g vol. 22, no. 13 (2022), p. 4873 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2686103039/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2686103039/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2686103039/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch