Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning

Gardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 17, no. 7 (Jul 2022), p. e0269773
Autor Principal: Han, Yu
Outros autores: Rizzo, Donna M, Hanley, John P, Coderre, Emily L, Prelock, Patricia A
Publicado:
Public Library of Science
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2686269933
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0269773  |2 doi 
035 |a 2686269933 
045 2 |b d20220701  |b d20220731 
084 |a 174835  |2 nlm 
100 1 |a Han, Yu 
245 1 |a Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning 
260 |b Public Library of Science  |c Jul 2022 
513 |a Journal Article 
520 3 |a Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication, and behavioral challenges. Diagnosis of ASD is complicated and there is an urgent need to identify ASD-associated biomarkers and features to help automate diagnostics and develop predictive ASD models. The present study adopts a novel evolutionary algorithm, the conjunctive clause evolutionary algorithm (CCEA), to select features most significant for distinguishing individuals with and without ASD, and is able to accommodate datasets having a small number of samples with a large number of feature measurements. The dataset is unique and comprises both behavioral and neuroimaging measurements from a total of 28 children from 7 to 14 years old. Potential biomarker candidates identified include brain volume, area, cortical thickness, and mean curvature in specific regions around the cingulate cortex, frontal cortex, and temporal-parietal junction, as well as behavioral features associated with theory of mind. A separate machine learning classifier (i.e., k-nearest neighbors algorithm) was used to validate the CCEA feature selection and for ASD prediction. Study findings demonstrate how machine learning tools might help move the needle on improving diagnostic and predictive models of ASD. 
653 |a Cognition 
653 |a Datasets 
653 |a Scanners 
653 |a Algorithms 
653 |a Autism 
653 |a Medical imaging 
653 |a Neurodevelopmental disorders 
653 |a Brain architecture 
653 |a Feature selection 
653 |a Diagnosis 
653 |a Machine learning 
653 |a Cortex (frontal) 
653 |a Automation 
653 |a Cortex (cingulate) 
653 |a Prediction models 
653 |a Learning algorithms 
653 |a Cortex (parietal) 
653 |a Evolutionary algorithms 
653 |a Children 
653 |a Anatomy 
653 |a Genetic algorithms 
653 |a Magnetic resonance imaging 
653 |a Biomarkers 
653 |a Neural networks 
653 |a Classification 
653 |a Neuroimaging 
653 |a Medical diagnosis 
653 |a Temporal lobe 
653 |a Theory of mind 
653 |a Social 
700 1 |a Rizzo, Donna M 
700 1 |a Hanley, John P 
700 1 |a Coderre, Emily L 
700 1 |a Prelock, Patricia A 
773 0 |t PLoS One  |g vol. 17, no. 7 (Jul 2022), p. e0269773 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2686269933/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2686269933/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2686269933/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch