A Parallel Multi-objective Optimization Algorithm Based on Coarse-to-Fine Decomposition for Real-time Large-scale Reservoir Flood Control Operation

Guardado en:
Detalles Bibliográficos
Publicado en:Water Resources Management vol. 36, no. 9 (Jul 2022), p. 3207
Autor principal: Yang, Rui
Otros Autores: Qi, Yutao, Lei, Jiaojiao, Ma, Xiaoliang, Zhang, Haibin
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2692887035
003 UK-CbPIL
022 |a 0920-4741 
022 |a 1573-1650 
024 7 |a 10.1007/s11269-022-03196-z  |2 doi 
035 |a 2692887035 
045 2 |b d20220701  |b d20220731 
084 |a 108395  |2 nlm 
100 1 |a Yang, Rui  |u Xidian University, School of Computer Science and Technology, Xi’an, China (GRID:grid.440736.2) (ISNI:0000 0001 0707 115X) 
245 1 |a A Parallel Multi-objective Optimization Algorithm Based on Coarse-to-Fine Decomposition for Real-time Large-scale Reservoir Flood Control Operation 
260 |b Springer Nature B.V.  |c Jul 2022 
513 |a Journal Article 
520 3 |a Reservoir flood control operation (RFCO) is a multi-objective optimization problem with a long sequence of correlated decision variables. It brings big challenges to large-scale multi-objective optimizers which were generally developed based on the divide-and-conquer strategy. For solving large-scale RFCO problem, a novel coarse-to-fine decomposition method is developed and combined with the algorithmic framework of multi-objective evolutionary algorithm based on decomposition (MOEA/D), giving rise to the proposed pCFD-MOEA/D algorithm. The pCFD-MOEA/D algorithm first divides the original RFCO problem into a sequence of sub-problems from coarse to fine scale with different scheduling time intervals. Then all sub-problems are optimized simultaneously and communicate at set intervals. Experimental results on three typical floods at Ankang reservoir have demonstrated that the proposed pCFD-MOEA/D can successfully obtain the elaborate hourly schedule schemes in real time and outperforms the compared algorithms. 
653 |a Scheduling 
653 |a Algorithms 
653 |a Flood control 
653 |a Optimization 
653 |a Decomposition 
653 |a Reservoirs 
653 |a Multiple objective analysis 
653 |a Real time 
653 |a Sequencing 
653 |a Intervals 
653 |a Floods 
653 |a Evolutionary algorithms 
653 |a Dams 
653 |a Computer science 
653 |a Dynamic programming 
653 |a Genetic algorithms 
653 |a Variables 
653 |a Linear programming 
653 |a Optimization algorithms 
653 |a Economic 
700 1 |a Qi, Yutao  |u Xidian University, School of Cyber Engineering, Xi’an, China (GRID:grid.440736.2) (ISNI:0000 0001 0707 115X) 
700 1 |a Lei, Jiaojiao  |u Xidian University, School of Computer Science and Technology, Xi’an, China (GRID:grid.440736.2) (ISNI:0000 0001 0707 115X) 
700 1 |a Ma, Xiaoliang  |u Shenzhen University, College of Computer Science and Software Engineering, Shenzhen, China (GRID:grid.263488.3) (ISNI:0000 0001 0472 9649) 
700 1 |a Zhang, Haibin  |u Xidian University, School of Cyber Engineering, Xi’an, China (GRID:grid.440736.2) (ISNI:0000 0001 0707 115X) 
773 0 |t Water Resources Management  |g vol. 36, no. 9 (Jul 2022), p. 3207 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2692887035/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2692887035/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch