Evolution of the Electronic and Optical Properties of Meta-Stable Allotropic Forms of 2D Tellurium for Increasing Number of Layers

Guardado en:
Detalles Bibliográficos
Publicado en:Nanomaterials vol. 12, no. 14 (2022), p. 2503
Autor principal: Grillo, Simone
Otros Autores: Pulci, Olivia, Marri, Ivan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:In this work, ab initio Density Functional Theory calculations are performed to investigate the evolution of the electronic and optical properties of 2D Tellurium—called Tellurene—for three different allotropic forms (<inline-formula>α</inline-formula>-, <inline-formula>β</inline-formula>- and <inline-formula>γ</inline-formula>-phase), as a function of the number of layers. We estimate the exciton binding energies and radii of the studied systems, using a 2D analytical model. Our results point out that these quantities are strongly dependent on the allotropic form, as well as on the number of layers. Remarkably, we show that the adopted method is suitable for reliably predicting, also in the case of Tellurene, the exciton binding energy, without the need of computationally demanding calculations, possibly suggesting interesting insights into the features of the system. Finally, we inspect the nature of the mechanisms ruling the interaction of neighbouring Tellurium atoms helical chains (characteristic of the bulk and <inline-formula>α</inline-formula>-phase crystal structures). We show that the interaction between helical chains is strong and cannot be explained by solely considering the van der Waals interaction.
ISSN:2079-4991
DOI:10.3390/nano12142503
Fuente:Materials Science Database