Decentralized Machine Learning for Intelligent Health Care Systems on the Computing Continuum

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Oct 3, 2022), p. n/a
Hovedforfatter: Kimovski, Dragi
Andre forfattere: Ristov, Sasko, Prodan, Radu
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2696968833
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/MC.2022.3142151  |2 doi 
035 |a 2696968833 
045 0 |b d20221003 
100 1 |a Kimovski, Dragi 
245 1 |a Decentralized Machine Learning for Intelligent Health Care Systems on the Computing Continuum 
260 |b Cornell University Library, arXiv.org  |c Oct 3, 2022 
513 |a Working Paper 
520 3 |a The introduction of electronic personal health records (EHR) enables nationwide information exchange and curation among different health care systems. However, the current EHR systems do not provide transparent means for diagnosis support, medical research or can utilize the omnipresent data produced by the personal medical devices. Besides, the EHR systems are centrally orchestrated, which could potentially lead to a single point of failure. Therefore, in this article, we explore novel approaches for decentralizing machine learning over distributed ledgers to create intelligent EHR systems that can utilize information from personal medical devices for improved knowledge extraction. Consequently, we proposed and evaluated a conceptual EHR to enable anonymous predictive analysis across multiple medical institutions. The evaluation results indicate that the decentralized EHR can be deployed over the computing continuum with reduced machine learning time of up to 60% and consensus latency of below 8 seconds. 
653 |a Medical electronics 
653 |a Health care facilities 
653 |a Medical research 
653 |a Data exchange 
653 |a Machine learning 
653 |a Electronic health records 
700 1 |a Ristov, Sasko 
700 1 |a Prodan, Radu 
773 0 |t arXiv.org  |g (Oct 3, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2696968833/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2207.14584