Cluster selection for load balancing in flying ad hoc networks using an optimal low-energy adaptive clustering hierarchy based on optimization approach

Guardado en:
Detalles Bibliográficos
Publicado en:Aircraft Engineering and Aerospace Technology vol. 94, no. 8 (2022), p. 1344-1356
Autor principal: Seyed Salar Sefati
Otros Autores: Halunga, Simona, Roya Zareh Farkhady
Publicado:
Emerald Group Publishing Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2697272914
003 UK-CbPIL
022 |a 1748-8842 
022 |a 1758-4213 
022 |a 0002-2667 
024 7 |a 10.1108/AEAT-08-2021-0264  |2 doi 
035 |a 2697272914 
045 2 |b d20220101  |b d20221231 
084 |a 46129  |2 nlm 
100 1 |a Seyed Salar Sefati  |u Faculty of Electronics, Telecommunications and Information Technology, Politehnica University of Bucharest, Bucharest, Romania 
245 1 |a Cluster selection for load balancing in flying <i>ad hoc</i> networks using an optimal low-energy adaptive clustering hierarchy based on optimization approach 
260 |b Emerald Group Publishing Limited  |c 2022 
513 |a Journal Article 
520 3 |a Purpose>Flying ad hoc networks (FANETs) have a major effect in various areas such as civil projects and smart cities. The facilities of installation and low cost of unmanned aerial vehicles (UAVs) have created a new challenge for researchers. Cluster head (CH) selection and load balancing between the CH are the most critical issues in the FANETs. For CH selection and load balancing in FANETs, this study used efficient clustering to address both problems and overcome these challenges. This paper aims to propose a novel CH selection and load balancing scheme to solve the low energy consumption and low latency in the FANET system.Design/methodology/approach>This paper tried to select the CH and load balancing with the help of low-energy adaptive clustering hierarchy (LEACH) algorithm and bat algorithm (BA). Load balancing and CH selection are NP-hard problems, so the metaheuristic algorithms can be the best answer for these issues. In the LEACH algorithm, UAVs randomly generate numerical, and these numbers are sorted according to those values. To use the load balancing, the threshold of CH has to be considered; if the threshold is less than 0.7, the BA starts working and begins to find new CH according to the emitted pulses.Findings>The proposed method compares with three algorithms, called bio-inspired clustering scheme FANETs, Grey wolf optimization and ant colony optimization in the NS3 simulator. The proposed algorithm has a good efficiency with respect to the network lifetime, energy consumption and cluster building time.Originality/value>This study aims to extend the UAV group control concepts to include CH selection and load balancing to improve UAV energy consumption and low latency. 
653 |a Global positioning systems--GPS 
653 |a Communication 
653 |a Unmanned aerial vehicles 
653 |a Clustering 
653 |a Optimization 
653 |a Ad hoc networks 
653 |a Network latency 
653 |a Algorithms 
653 |a Literature reviews 
653 |a Surveillance 
653 |a Ant colony optimization 
653 |a Energy consumption 
653 |a Heuristic methods 
653 |a Load balancing 
653 |a Protocol 
700 1 |a Halunga, Simona  |u Faculty of Electronics, Telecommunications and Information Technology, Politehnica University of Bucharest, Bucharest, Romania 
700 1 |a Roya Zareh Farkhady  |u Department of Computer Engineering, Institute of Higher Education Roshdiyeh, Tabriz, Iran 
773 0 |t Aircraft Engineering and Aerospace Technology  |g vol. 94, no. 8 (2022), p. 1344-1356 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2697272914/abstract/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2697272914/fulltext/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2697272914/fulltextPDF/embedded/KOLE7RPJVUKQAXRX?source=fedsrch