Model-Free Deep Reinforcement Learning in Software-Defined Networks

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Sep 3, 2022), p. n/a
Главный автор: Borchjes, Luke
Другие авторы: Nyirenda, Clement, Leenen, Louise
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 2711105732
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2711105732 
045 0 |b d20220903 
100 1 |a Borchjes, Luke 
245 1 |a Model-Free Deep Reinforcement Learning in Software-Defined Networks 
260 |b Cornell University Library, arXiv.org  |c Sep 3, 2022 
513 |a Working Paper 
520 3 |a This paper compares two deep reinforcement learning approaches for cyber security in software defined networking. Neural Episodic Control to Deep Q-Network has been implemented and compared with that of Double Deep Q-Networks. The two algorithms are implemented in a format similar to that of a zero-sum game. A two-tailed T-test analysis is done on the two game results containing the amount of turns taken for the defender to win. Another comparison is done on the game scores of the agents in the respective games. The analysis is done to determine which algorithm is the best in game performer and whether there is a significant difference between them, demonstrating if one would have greater preference over the other. It was found that there is no significant statistical difference between the two approaches. 
653 |a Software-defined networking 
653 |a Algorithms 
653 |a Zero sum games 
653 |a Deep learning 
653 |a Machine learning 
653 |a Cybersecurity 
700 1 |a Nyirenda, Clement 
700 1 |a Leenen, Louise 
773 0 |t arXiv.org  |g (Sep 3, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2711105732/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2209.01490