Fully and partially distributed Quantum Generalized Benders Decomposition for Unit Commitment Problems

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Dec 15, 2024), p. n/a
Autor principal: Gao, Fang
Outros Autores: Huang, Dejian, Zhao, Ziwei, Dai, Wei, Yang, Mingyu, Gao, Qing, Pan, Yu
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2724771295
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2724771295 
045 0 |b d20241215 
100 1 |a Gao, Fang 
245 1 |a Fully and partially distributed Quantum Generalized Benders Decomposition for Unit Commitment Problems 
260 |b Cornell University Library, arXiv.org  |c Dec 15, 2024 
513 |a Working Paper 
520 3 |a A series of hybrid quantum-classical generalized Benders decomposition (GBD) algorithms are proposed to address unit commitment (UC) problems under centralized, distributed, and partially distributed frameworks. In the centralized approach, the quantum GBD transforms the master problem (MP) into a quadratic unconstrained binary optimization form suitable for quantum computing. For distributed systems, the distributed consensus quantum GBD employs an average consensus strategy to reformulate subproblems into local subproblems. By leveraging the dual information, local cutting planes are constructed to decompose the MP into local master problems (LMPs). This approach reduces the qubit overhead and addresses the partitioning requirements. The consensus-inspired quantum GBD (CIQGBD) and its partially distributed variant, D-CIQGBD are proposed based on optimizing the allocation of relaxation variables directly, the algorithms construct more rational cutting planes, thereby enhancing the minimum eigenenergy gap of the system Hamiltonian during quantum annealing and improving the computational efficiency. Extensive experiments under various UC scenarios validate the performance of the above-mentioned hybrid algorithms. Compared to the classical solver Gurobi, D-CIQGBD demonstrates a speed advantage in solving the security-constrained UC problem on the IEEE-RTS 24-bus system. These results provide new perspectives on leveraging quantum computing for the distributed optimization of power systems. 
653 |a Quantum computing 
653 |a Distributed generation 
653 |a Benders decomposition 
653 |a Optimization 
653 |a Decomposition 
653 |a Algorithms 
653 |a Complexity 
653 |a Mixed integer 
653 |a Unit commitment 
653 |a Simulated annealing 
653 |a Decision making 
653 |a Nonlinear programming 
700 1 |a Huang, Dejian 
700 1 |a Zhao, Ziwei 
700 1 |a Dai, Wei 
700 1 |a Yang, Mingyu 
700 1 |a Gao, Qing 
700 1 |a Pan, Yu 
773 0 |t arXiv.org  |g (Dec 15, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2724771295/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2210.06678