ThreatCluster: Threat Clustering for Information Overload Reduction in Computer Emergency Response Teams

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Mar 15, 2024), p. n/a
Príomhchruthaitheoir: Kuehn, Philipp
Rannpháirtithe: Nadermahmoodi, Dilara, Kerk, Moritz, Reuter, Christian
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 2728700835
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2728700835 
045 0 |b d20240315 
100 1 |a Kuehn, Philipp 
245 1 |a ThreatCluster: Threat Clustering for Information Overload Reduction in Computer Emergency Response Teams 
260 |b Cornell University Library, arXiv.org  |c Mar 15, 2024 
513 |a Working Paper 
520 3 |a The ever-increasing number of threats and the existing diversity of information sources pose challenges for Computer Emergency Response Teams (CERTs). To respond to emerging threats, CERTs must gather information in a timely and comprehensive manner. But the volume of sources and information leads to information overload. This paper contributes to the question of how to reduce information overload for CERTs. We propose clustering incoming information as scanning this information is one of the most tiresome, but necessary, manual steps. Based on current studies, we establish conditions for such a framework. Different types of evaluation metrics are used and selected in relation to the framework conditions. Furthermore, different document embeddings and distance measures are evaluated and interpreted in combination with clustering methods. We use three different corpora for the evaluation, a novel ground truth corpus based on threat reports, one security bug report (SBR) corpus, and one with news articles. Our work shows, it is possible to reduce the information overload by up to 84.8% with homogeneous clusters. A runtime analysis of the clustering methods strengthens the decision of selected clustering methods. The source code and dataset will be made publicly available after acceptance. 
653 |a Emergency response 
653 |a Datasets 
653 |a Vector processing (computers) 
653 |a Overloading 
653 |a Cluster analysis 
653 |a Messages 
653 |a Information sources 
653 |a Teams 
653 |a Clustering 
653 |a Evaluation 
653 |a Vector quantization 
653 |a Information overload 
700 1 |a Nadermahmoodi, Dilara 
700 1 |a Kerk, Moritz 
700 1 |a Reuter, Christian 
773 0 |t arXiv.org  |g (Mar 15, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2728700835/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2210.14067