Hessian-free ray-born inversion for quantitative ultrasound tomography

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:arXiv.org (May 17, 2024), p. n/a
Váldodahkki: Javaherian, Ashkan
Almmustuhtton:
Cornell University Library, arXiv.org
Fáttát:
Liŋkkat:Citation/Abstract
Full text outside of ProQuest
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 2731611885
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2731611885 
045 0 |b d20240517 
100 1 |a Javaherian, Ashkan 
245 1 |a Hessian-free ray-born inversion for quantitative ultrasound tomography 
260 |b Cornell University Library, arXiv.org  |c May 17, 2024 
513 |a Working Paper 
520 3 |a This study proposes a Hessian-free ray-born inversion approach for biomedical ultrasound tomography. The proposed approach is a more efficient version of the ray-born inversion approach proposed in [3]. Using these approaches, the propagation of acoustic waves are modelled using a ray approximation to heterogeneous Green's function, and the inverse problem is solved in the frequency domain via iteratively linearisation and minimisation of the objective function from low to high frequencies. In [3], the linear subproblem associated with each frequency set is solved via an implicit and iterative inversion of the Hessian matrix (inner iterations). Instead, in this study, each linear subproblem is weighted in a way in which the Hessian matrix be diagonalised, and can thus be inverted in a single step. Using this Hessian-free approach, the computational cost for solving each linear subproblem becomes almost the same as solving one linear subproblem associated with a radon-type time-of-flight-based approach using bent rays. This computational cost is about an order of magnitude less than the equivalent Hessian-based approach proposed in [3]. More importantly, the assumptions made for diagonalising the Hessian matrix make the image reconstruction more robust than the inversion approach in [3] to noise or initial guess. 
653 |a Acoustic propagation 
653 |a Tomography 
653 |a Smoothness 
653 |a Mathematical analysis 
653 |a Image reconstruction 
653 |a Iterative methods 
653 |a Inverse problems 
653 |a Hessian matrices 
653 |a Wave propagation 
653 |a Green's functions 
653 |a Ultrasonic imaging 
653 |a Preconditioning 
653 |a Acoustic waves 
773 0 |t arXiv.org  |g (May 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2731611885/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2211.00316