Changes from Classical Statistics to Modern Statistics and Data Science

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:arXiv.org (Oct 30, 2022), p. n/a
मुख्य लेखक: Zhang, Kai
अन्य लेखक: Liu, Shan, Xiong, Momiao
प्रकाशित:
Cornell University Library, arXiv.org
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full text outside of ProQuest
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 2733855355
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2733855355 
045 0 |b d20221030 
100 1 |a Zhang, Kai 
245 1 |a Changes from Classical Statistics to Modern Statistics and Data Science 
260 |b Cornell University Library, arXiv.org  |c Oct 30, 2022 
513 |a Working Paper 
520 3 |a A coordinate system is a foundation for every quantitative science, engineering, and medicine. Classical physics and statistics are based on the Cartesian coordinate system. The classical probability and hypothesis testing theory can only be applied to Euclidean data. However, modern data in the real world are from natural language processing, mathematical formulas, social networks, transportation and sensor networks, computer visions, automations, and biomedical measurements. The Euclidean assumption is not appropriate for non Euclidean data. This perspective addresses the urgent need to overcome those fundamental limitations and encourages extensions of classical probability theory and hypothesis testing , diffusion models and stochastic differential equations from Euclidean space to non Euclidean space. Artificial intelligence such as natural language processing, computer vision, graphical neural networks, manifold regression and inference theory, manifold learning, graph neural networks, compositional diffusion models for automatically compositional generations of concepts and demystifying machine learning systems, has been rapidly developed. Differential manifold theory is the mathematic foundations of deep learning and data science as well. We urgently need to shift the paradigm for data analysis from the classical Euclidean data analysis to both Euclidean and non Euclidean data analysis and develop more and more innovative methods for describing, estimating and inferring non Euclidean geometries of modern real datasets. A general framework for integrated analysis of both Euclidean and non Euclidean data, composite AI, decision intelligence and edge AI provide powerful innovative ideas and strategies for fundamentally advancing AI. We are expected to marry statistics with AI, develop a unified theory of modern statistics and drive next generation of AI and data science. 
653 |a Hypothesis testing 
653 |a Social networks 
653 |a Data analysis 
653 |a Data science 
653 |a Computer vision 
653 |a Euclidean space 
653 |a Machine learning 
653 |a Diffusion 
653 |a Statistical analysis 
653 |a Decision analysis 
653 |a Artificial intelligence 
653 |a Hypotheses 
653 |a Neural networks 
653 |a Probability theory 
653 |a Manifolds (mathematics) 
653 |a Natural language processing 
653 |a Differential equations 
653 |a Deep learning 
653 |a Euclidean geometry 
653 |a Cartesian coordinates 
653 |a Graph neural networks 
700 1 |a Liu, Shan 
700 1 |a Xiong, Momiao 
773 0 |t arXiv.org  |g (Oct 30, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2733855355/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2211.03756