CryptoNet: Using Auto-Regressive Multi-Layer Artificial Neural Networks to Predict Financial Time Series

Enregistré dans:
Détails bibliographiques
Publié dans:Information vol. 13, no. 11 (2022), p. 524
Auteur principal: Ranaldi, Leonardo
Autres auteurs: Gerardi, Marco, Fallucchi, Francesca
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2734629652
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info13110524  |2 doi 
035 |a 2734629652 
045 2 |b d20220101  |b d20221231 
084 |a 231474  |2 nlm 
100 1 |a Ranaldi, Leonardo  |u Department of Innovation and Information Engineering, Guglielmo Marconi University, 00193 Roma, Italy; Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy 
245 1 |a Crypto<i>Net</i>: Using Auto-Regressive Multi-Layer Artificial Neural Networks to Predict Financial Time Series 
260 |b MDPI AG  |c 2022 
513 |a Journal Article 
520 3 |a When analyzing a financial asset, it is essential to study the trend of its time series. It is also necessary to examine its evolution and activity over time to statistically analyze its possible future behavior. Both retail and institutional investors base their trading strategies on these analyses. One of the most used techniques to study financial time series is to analyze its dynamic structure using auto-regressive models, simple moving average models (SMA), and mixed auto-regressive moving average models (ARMA). These techniques, unfortunately, do not always provide appreciable results both at a statistical level and as the Risk-Reward Ratio (RRR); above all, each system has its pros and cons. In this paper, we present CryptoNet; this system is based on the time series extraction exploiting the vast potential of artificial intelligence (AI) and machine learning (ML). Specifically, we focused on time series trends extraction by developing an artificial neural network, trained and tested on two famous crypto-currencies: Bitcoinand Ether. CryptoNet learning algorithm improved the classic linear regression model up to 31% of MAE (mean absolute error). Results from this work should encourage machine learning techniques in sectors classically reluctant to adopt non-standard approaches. 
653 |a Stock exchanges 
653 |a Machine learning 
653 |a Regression analysis 
653 |a Trends 
653 |a Forecasting 
653 |a Multilayers 
653 |a Artificial neural networks 
653 |a Regression models 
653 |a Securities markets 
653 |a Neural networks 
653 |a Volatility 
653 |a Digital currencies 
653 |a Algorithms 
653 |a Autoregressive moving-average models 
653 |a Methods 
653 |a Artificial intelligence 
653 |a Time series 
653 |a Statistical analysis 
700 1 |a Gerardi, Marco  |u Department of Innovation and Information Engineering, Guglielmo Marconi University, 00193 Roma, Italy 
700 1 |a Fallucchi, Francesca  |u Department of Innovation and Information Engineering, Guglielmo Marconi University, 00193 Roma, Italy 
773 0 |t Information  |g vol. 13, no. 11 (2022), p. 524 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2734629652/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2734629652/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2734629652/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch