Efficient quantum implementation of 2+1 U(1) lattice gauge theories with Gauss law constraints

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Nov 18, 2022), p. n/a
Autor principal: Kane, Christopher
Otros Autores: Grabowska, Dorota M, Nachman, Benjamin, Bauer, Christian W
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2738701319
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2738701319 
045 0 |b d20221118 
100 1 |a Kane, Christopher 
245 1 |a Efficient quantum implementation of 2+1 U(1) lattice gauge theories with Gauss law constraints 
260 |b Cornell University Library, arXiv.org  |c Nov 18, 2022 
513 |a Working Paper 
520 3 |a The study of real-time evolution of lattice quantum field theories using classical computers is known to scale exponentially with the number of lattice sites. Due to a fundamentally different computational strategy, quantum computers hold the promise of allowing for detailed studies of these dynamics from first principles. However, much like with classical computations, it is important that quantum algorithms do not have a cost that scales exponentially with the volume. Recently, it was shown how to break the exponential scaling of a naive implementation of a U(1) gauge theory in two spatial dimensions through an operator redefinition. In this work, we describe modifications to how operators must be sampled in the new operator basis to keep digitization errors small. We compare the precision of the energies and plaquette expectation value between the two operator bases and find they are comparable. Additionally, we provide an explicit circuit construction for the Suzuki-Trotter implementation of the theory using the Walsh function formalism. The gate count scaling is studied as a function of the lattice volume, for both exact circuits and approximate circuits where rotation gates with small arguments have been dropped. We study the errors from finite Suzuki-Trotter time-step, circuit approximation, and quantum noise in a calculation of an explicit observable using IBMQ superconducting qubit hardware. We find the gate count scaling for the approximate circuits can be further reduced by up to a power of the volume without introducing larger errors. 
653 |a First principles 
653 |a Mathematical analysis 
653 |a Gauge theory 
653 |a Quantum computers 
653 |a Gates (circuits) 
653 |a Lattice sites 
653 |a Circuits 
653 |a Scaling 
653 |a Algorithms 
653 |a Errors 
653 |a Walsh function 
653 |a Quantum theory 
653 |a Gate counting 
653 |a Qubits (quantum computing) 
700 1 |a Grabowska, Dorota M 
700 1 |a Nachman, Benjamin 
700 1 |a Bauer, Christian W 
773 0 |t arXiv.org  |g (Nov 18, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2738701319/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2211.10497