Challenges in the Geo-Processing of Big Soil Spatial Data

Guardat en:
Dades bibliogràfiques
Publicat a:Land vol. 11, no. 12 (2022), p. 2287
Autor principal: Liakos, Leonidas
Altres autors: Panagos, Panos
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2756738735
003 UK-CbPIL
022 |a 2073-445X 
024 7 |a 10.3390/land11122287  |2 doi 
035 |a 2756738735 
045 2 |b d20220101  |b d20221231 
084 |a 231528  |2 nlm 
100 1 |a Liakos, Leonidas 
245 1 |a Challenges in the Geo-Processing of Big Soil Spatial Data 
260 |b MDPI AG  |c 2022 
513 |a Journal Article 
520 3 |a This study addressed a critical resource—soil—through the prism of processing big data at the continental scale. Rapid progress in technology and remote sensing has majorly improved data processing on extensive spatial and temporal scales. Here, the manuscript presents the results of a systematic effort to geo-process and analyze soil-relevant data. In addition, the main highlights include the difficulties associated with using data infrastructures, managing big geospatial data, decentralizing operations through remote access, mass processing, and automating the data-processing workflow using advanced programming languages. Challenges to this study included the reproducibility of the results, their presentation in a communicative way, and the harmonization of complex heterogeneous data in space and time based on high standards of accuracy. Accuracy was especially important as the results needed to be identical at all spatial scales (from point counts to aggregated countrywide data). The geospatial modeling of soil requires analysis at multiple spatial scales, from the pixel level, through multiple territorial units (national or regional), and river catchments, to the global scale. Advanced mapping methods (e.g., zonal statistics, map algebra, choropleth maps, and proportional symbols) were used to convey comprehensive and substantial information that would be of use to policymakers. More specifically, a variety of cartographic practices were employed, including vector and raster visualization and hexagon grid maps at the global or European scale and in several cartographic projections. The information was rendered in both grid format and as aggregated statistics per polygon (zonal statistics), combined with diagrams and an advanced graphical interface. The uncertainty was estimated and the results were validated in order to present the outputs in the most robust way. The study was also interdisciplinary in nature, requiring large-scale datasets to be integrated from different scientific domains, such as soil science, geography, hydrology, chemistry, climate change, and agriculture. 
653 |a Climate change 
653 |a Catchments 
653 |a Geography 
653 |a Spatial analysis 
653 |a Data processing 
653 |a Datasets 
653 |a Science 
653 |a Big Data 
653 |a Natural resources 
653 |a Soil erosion 
653 |a Workflow 
653 |a Remote sensing 
653 |a Soil chemistry 
653 |a Data analysis 
653 |a Statistical analysis 
653 |a Maps 
653 |a General circulation models 
653 |a Cartography 
653 |a Soils 
653 |a Programming languages 
653 |a River catchments 
653 |a Soil sciences 
653 |a Spatial data 
653 |a Artificial intelligence 
653 |a Hydrology 
653 |a Information processing 
653 |a Soil analysis 
653 |a Statistics 
653 |a Reproducibility 
700 1 |a Panagos, Panos 
773 0 |t Land  |g vol. 11, no. 12 (2022), p. 2287 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2756738735/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2756738735/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2756738735/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch