Time Series Forecast Model Application for Broiler Weight Prediction using Environmental Factors

Na minha lista:
Detalhes bibliográficos
Publicado no:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2022)
Autor principal: Birzniece, Ilze
Outros Autores: Andersone, Ilze, Nikitenko, Agris, Balina, Signe, Kikans, Andris
Publicado em:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Assuntos:
Acesso em linha:Citation/Abstract
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2759395348
003 UK-CbPIL
024 7 |a 10.1109/ICECCME55909.2022.9988243  |2 doi 
035 |a 2759395348 
045 2 |b d20220101  |b d20221231 
084 |a 228229  |2 nlm 
100 1 |a Birzniece, Ilze  |u Riga Technical University,Department of Artificial Intelligence and Systems Engineering,Riga,Latvia 
245 1 |a Time Series Forecast Model Application for Broiler Weight Prediction using Environmental Factors 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2022 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)Conference Start Date: 2022, Nov. 16 Conference End Date: 2022, Nov. 18 Conference Location: Maldives, MaldivesPredicting the growth of broiler chickens is an essential task in the poultry industry. The data used in the study include both the production environmental indicators (temperature, gas concentration, humidity, and others) and the growth rates of poultry (weight, amount of feed consumed, fall) by analyzing their correlations throughout several production cycles. The proposed approach includes several stages, starting with data pre-processing, broiler weight data augmentation, comparison with a reference model, definition, and detection of uncomfortable and dangerous environmental conditions. For the model-building part, the Long short-term memory (LSTM) artificial neural network is applied. The validation of the forecasting model is done by comparing the forecasted weight provided by the model with the actual weight measurements during the randomly selected bird life cycle and varied environmental conditions. The acquired results showed that the provided forecast accuracy is sufficient for production management. 
653 |a Production management 
653 |a Mathematical models 
653 |a Artificial neural networks 
653 |a Poultry 
653 |a Mechatronics 
653 |a Environmental indicators 
653 |a Environmental factors 
653 |a Environmental conditions 
653 |a Economic 
653 |a Environmental 
700 1 |a Andersone, Ilze  |u Riga Technical University,Department of Artificial Intelligence and Systems Engineering,Riga,Latvia 
700 1 |a Nikitenko, Agris  |u Riga Technical University,Department of Artificial Intelligence and Systems Engineering,Riga,Latvia 
700 1 |a Balina, Signe  |u University of Latvia,Department of Economics,Riga,Latvia 
700 1 |a Kikans, Andris  |u Datorzinibu centrs,Riga,Latvia 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2022) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2759395348/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch