Bark Beetle Effects on Fire Regimes Depend on Underlying Fuel Modifications in Semiarid Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Advances in Modeling Earth Systems vol. 15, no. 1 (Jan 2023)
Autor principal: Ren, Jianning
Otros Autores: Hanan, Erin J, Hicke, Jeffrey A, Kolden, Crystal A, Abatzoglou, John T, Christina (Naomi) L. Tague, Bart, Ryan R, Kennedy, Maureen C, Liu, Mingliang, Adam, Jennifer C
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2769955692
003 UK-CbPIL
022 |a 1942-2466 
024 7 |a 10.1029/2022MS003073  |2 doi 
035 |a 2769955692 
045 2 |b d20230101  |b d20230131 
084 |a 151828  |2 nlm 
100 1 |a Ren, Jianning  |u Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA; Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV, USA 
245 1 |a Bark Beetle Effects on Fire Regimes Depend on Underlying Fuel Modifications in Semiarid Systems 
260 |b John Wiley & Sons, Inc.  |c Jan 2023 
513 |a Journal Article 
520 3 |a Although natural disturbances such as wildfire, extreme weather events, and insect outbreaks play a key role in structuring ecosystems and watersheds worldwide, climate change has intensified many disturbance regimes, which can have compounding negative effects on ecosystem processes and services. Recent studies have highlighted the need to understand whether wildfire increases or decreases after large-scale beetle outbreaks. However, observational studies have produced mixed results. To address this, we applied a coupled ecohydrologic-fire regime-beetle effects model (RHESSys-WMFire-Beetle) in a semiarid watershed in the western US. We found that in the red phase (0–5 years post-outbreak), surface fire extent, burn probability, and surface and crown fire severity all decreased. In the gray phase (6–15 years post-outbreak), both surface fire extent and surface and crown fire severity increased with increasing mortality. However, fire probability reached a plateau during high mortality levels (>50% in terms of carbon removed). In the old phase (one to several decades post-outbreak), fire extent and severity still increased in all mortality levels. However, fire probability increased during low to medium mortality (≤50%) but decreased during high mortality levels (>50%). Wildfire responses also depended on the fire regime. In fuel-limited locations, fire probability increased with increasing fuel loads, whereas in fuel-abundant (flammability-limited) systems, fire probability decreased due to decreases in fuel aridity from reduced plant water demand. This modeling framework can improve our understanding of the mechanisms driving wildfire responses and aid managers in predicting when and where fire hazards will increase. 
651 4 |a Big Wood River 
651 4 |a Idaho 
651 4 |a United States--US 
653 |a Watersheds 
653 |a Extreme weather 
653 |a Fire hazards 
653 |a Bark 
653 |a Observational studies 
653 |a Ecosystem disturbance 
653 |a Aridity 
653 |a Leaves 
653 |a Plant water 
653 |a Climate change 
653 |a Outbreaks 
653 |a Flammability 
653 |a Wildfires 
653 |a Vegetation 
653 |a Precipitation 
653 |a Creeks & streams 
653 |a Mortality 
653 |a Water demand 
653 |a Forest & brush fires 
653 |a Probability theory 
653 |a Environmental 
700 1 |a Hanan, Erin J  |u Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV, USA 
700 1 |a Hicke, Jeffrey A  |u Department of Geography, University of Idaho, Moscow, ID, USA 
700 1 |a Kolden, Crystal A  |u Management of Complex Systems, University of California, Merced, Merced, CA, USA 
700 1 |a Abatzoglou, John T  |u Management of Complex Systems, University of California, Merced, Merced, CA, USA 
700 1 |a Christina (Naomi) L. Tague  |u Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA 
700 1 |a Bart, Ryan R  |u Sierra Nevada Research Institute, University of California, Merced, Merced, CA, USA 
700 1 |a Kennedy, Maureen C  |u Division of Sciences and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Tacoma, WA, USA 
700 1 |a Liu, Mingliang  |u Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA 
700 1 |a Adam, Jennifer C  |u Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA 
773 0 |t Journal of Advances in Modeling Earth Systems  |g vol. 15, no. 1 (Jan 2023) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2769955692/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2769955692/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2769955692/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch