A versatile approach to numerically investigate the trapped air bubble in piezoelectric inkjet printing process

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Microfluidics and Nanofluidics vol. 27, no. 3 (Mar 2023), p. 20
Үндсэн зохиолч: Wang, Xiaopei
Бусад зохиолчид: Wang, Chunhui, Ping, Pengxiang, Yan, Chao, Tian, Hongmiao, Shao, Jinyou
Хэвлэсэн:
Springer Nature B.V.
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 2773475784
003 UK-CbPIL
022 |a 1613-4982 
022 |a 1613-4990 
024 7 |a 10.1007/s10404-023-02628-5  |2 doi 
035 |a 2773475784 
045 2 |b d20230301  |b d20230331 
084 |a 176043  |2 nlm 
100 1 |a Wang, Xiaopei  |u Xi’an Jiaotong University, Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
245 1 |a A versatile approach to numerically investigate the trapped air bubble in piezoelectric inkjet printing process 
260 |b Springer Nature B.V.  |c Mar 2023 
513 |a Journal Article 
520 3 |a The piezoelectric inkjet (PIJ) printing technique, as a typical drop-on-demand (DOD) inkjet process, employs the electric potential for activating the mechanical vibration of a lead zirconium titanate (PZT) membrane. As a result, the constant flow of the fluidic ink within the solid channel is attained, resulting in the formation of a droplet in the nozzle. This droplet will be subsequently deposited on a substrate, which renders the PIJ method one of the most indispensable tools for various applications in MEMS, cell printing, LCD fabrication, etc. However, by considering a specific driving waveform, an air bubble will be generated and trapped within the solid channel after the ink droplet is ejected from the nozzle, which would inevitably affect the subsequent printing process. Additionally, there are scarce reports in the literature that have dealt with this issue in depth. Along these lines, in this work, a conservative level set method in conjunction with the inverse piezoelectric effect and the fluid–structure interaction is proposed for analyzing the PIJ printing process. On top of that, benchmark effectiveness against the experimental tests is introduced, in which an air bubble can be observed to be generated and further be trapped within the nozzle channel. The evolution of air bubble formation and trapping process was then visually analyzed in depth by considering the ink–solid–air interaction in the form of numerical investigation, which has never been reported in the literature according to our best knowledge. In addition, a variety of both numerical and experimental results have been provided to illustrate the coalescence of the trapped air bubbles from smaller bubbles to a large bubble and to demonstrate how exactly the trapped air bubbles affect the print quality. Furthermore, the influence of the driving waveform on the evolution of the trapped air bubble was explored, which could be of great advantage for the better control of the printing process for various PIJ printheads. 
653 |a Nozzles 
653 |a Evolution 
653 |a Waveforms 
653 |a Bubbles 
653 |a Zirconium titanates 
653 |a Electric potential 
653 |a Printing 
653 |a Air bubbles 
653 |a Droplets 
653 |a Microelectromechanical systems 
653 |a Inkjet printing 
653 |a Coalescence 
653 |a Printers (data processing) 
653 |a Piezoelectricity 
653 |a Fabrication 
653 |a Substrates 
653 |a Zirconium 
653 |a Fluid-structure interaction 
653 |a Vibration 
653 |a Environmental 
700 1 |a Wang, Chunhui  |u Xi’an Jiaotong University, Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
700 1 |a Ping, Pengxiang  |u Xi’an Jiaotong University, Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
700 1 |a Yan, Chao  |u Xi’an Jiaotong University, Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
700 1 |a Tian, Hongmiao  |u Xi’an Jiaotong University, Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
700 1 |a Shao, Jinyou  |u Xi’an Jiaotong University, Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
773 0 |t Microfluidics and Nanofluidics  |g vol. 27, no. 3 (Mar 2023), p. 20 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2773475784/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2773475784/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch