Electromechanical phase-field fracture modelling of piezoresistive CNT-based composites

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Feb 5, 2023), p. n/a
Autor principal: Quinteros, L
Otros Autores: García-Macías, E, Martínez-Pañeda, E
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2774008381
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.cma.2023.115941  |2 doi 
035 |a 2774008381 
045 0 |b d20230205 
100 1 |a Quinteros, L 
245 1 |a Electromechanical phase-field fracture modelling of piezoresistive CNT-based composites 
260 |b Cornell University Library, arXiv.org  |c Feb 5, 2023 
513 |a Working Paper 
520 3 |a We present a novel computational framework to simulate the electromechanical response of self-sensing carbon nanotube (CNT)-based composites experiencing fracture. The computational framework combines electrical-deformation-fracture finite element modelling with a mixed micromechanics formulation. The latter is used to estimate the constitutive properties of CNT-based composites, including the elastic tensor, fracture energy, electrical conductivity, and linear piezoresistive coefficients. These properties are inputted into a coupled electro-structural finite element model, which simulates the evolution of cracks based upon phase-field fracture. The coupled physical problem is solved in a monolithic manner, exploiting the robustness and efficiency of a quasi-Newton algorithm. 2D and 3D boundary value problems are simulated to illustrate the potential of the modelling framework in assessing the influence of defects on the electromechanical response of meso- and macro-scale smart structures. Case studies aim at shedding light into the interplay between fracture and the electromechanical material response and include parametric analyses, validation against experiments and the simulation of complex cracking conditions (multiple defects, crack merging). The presented numerical results showcase the efficiency and robustness of the computational framework, as well as its ability to model a large variety of structural configurations and damage patterns. The deformation-electrical-fracture finite element code developed is made freely available to download. 
653 |a Finite element method 
653 |a Micromechanics 
653 |a Carbon nanotubes 
653 |a Deformation 
653 |a Damage patterns 
653 |a Cracking (fracturing) 
653 |a Tensors 
653 |a Algorithms 
653 |a Electrical resistivity 
653 |a Mathematical models 
653 |a Robustness (mathematics) 
653 |a Defects 
653 |a Composite materials 
653 |a Computer simulation 
653 |a Smart structures 
653 |a Boundary value problems 
700 1 |a García-Macías, E 
700 1 |a Martínez-Pañeda, E 
773 0 |t arXiv.org  |g (Feb 5, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2774008381/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2302.02338