Deep Learning Applications to Particle Physics: from Monte Carlo simulation acceleration to ProtoDUNE reconstruction

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Feb 7, 2023), p. n/a
Yazar: Rossi, Marco
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2774362773
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2774362773 
045 0 |b d20230207 
100 1 |a Rossi, Marco 
245 1 |a Deep Learning Applications to Particle Physics: from Monte Carlo simulation acceleration to ProtoDUNE reconstruction 
260 |b Cornell University Library, arXiv.org  |c Feb 7, 2023 
513 |a Working Paper 
520 3 |a The thesis arises in the context of deep learning applications to particle physics. The dissertation follows two main parallel streams: the development of hardware-accelerated tools for event simulation in high-energy collider physics, and the optimization of deep learning models for reconstruction algorithms at neutrino detectors. Event generation is a central concept in high-energy physics phenomenology studies. The state-of-the-art software dedicated to Monte Carlo simulation is often written for general-purpose computing architectures (CPUs), which allow great flexibility but are not compatible with specialized accelerating devices, GPUs. We present two original tools, PDFFlow and MadFlow, that manage to combine these two aspects in Python. PDFFlow, is a Parton Distribution Functions interpolator, while MadFlow aims at building a complete tool suite to accelerate the whole event generation framework. The reconstruction pipeline at neutrino detectors is comprised of many different algorithms that work in synergy to extract a high-level representation of detector data. All the most important experiments in neutrino physics are developing software to automatically process and extract this information. This work describes the implementation of deep learning techniques to improve neutrino reconstruction efficiency at the ProtoDUNE-SP detector. Two original contributions are presented concerning raw data denoising and a hit-clustering procedure named "slicing". Both denoising and slicing involve the implementation and the training of novel neural network architectures, based on state-of-the-art models in machine learning, such as feed-forward, convolutional and graph neural networks. They represent a proof of concept that these models are indeed capable of providing an important impact on signal reconstruction at neutrino detectors. 
653 |a Software 
653 |a Deep learning 
653 |a Computer architecture 
653 |a Particle physics 
653 |a Slicing 
653 |a Phenomenology 
653 |a Machine learning 
653 |a Signal reconstruction 
653 |a Computer simulation 
653 |a Neutrinos 
653 |a Detectors 
653 |a Monte Carlo simulation 
653 |a Clustering 
653 |a Pipelining (computers) 
653 |a Noise reduction 
653 |a Distribution functions 
653 |a Sensors 
653 |a Neural networks 
653 |a State-of-the-art reviews 
653 |a Optimization 
653 |a Algorithms 
653 |a Software development 
653 |a Graph neural networks 
773 0 |t arXiv.org  |g (Feb 7, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2774362773/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2302.03343