Exploring the Representation Manifolds of Stable Diffusion Through the Lens of Intrinsic Dimension

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Feb 16, 2023), p. n/a
Autor principal: Kvinge, Henry
Altres autors: Brown, Davis, Godfrey, Charles
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2778490773
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2778490773 
045 0 |b d20230216 
100 1 |a Kvinge, Henry 
245 1 |a Exploring the Representation Manifolds of Stable Diffusion Through the Lens of Intrinsic Dimension 
260 |b Cornell University Library, arXiv.org  |c Feb 16, 2023 
513 |a Working Paper 
520 3 |a Prompting has become an important mechanism by which users can more effectively interact with many flavors of foundation model. Indeed, the last several years have shown that well-honed prompts can sometimes unlock emergent capabilities within such models. While there has been a substantial amount of empirical exploration of prompting within the community, relatively few works have studied prompting at a mathematical level. In this work we aim to take a first step towards understanding basic geometric properties induced by prompts in Stable Diffusion, focusing on the intrinsic dimension of internal representations within the model. We find that choice of prompt has a substantial impact on the intrinsic dimension of representations at both layers of the model which we explored, but that the nature of this impact depends on the layer being considered. For example, in certain bottleneck layers of the model, intrinsic dimension of representations is correlated with prompt perplexity (measured using a surrogate model), while this correlation is not apparent in the latent layers. Our evidence suggests that intrinsic dimension could be a useful tool for future studies of the impact of different prompts on text-to-image models. 
653 |a Diffusion 
653 |a Representations 
700 1 |a Brown, Davis 
700 1 |a Godfrey, Charles 
773 0 |t arXiv.org  |g (Feb 16, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2778490773/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2302.09301