A quantitative comparison of phase-averaged models for bubbly, cavitating flows

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Feb 22, 2023), p. n/a
Autor principal: Bryngelson, Spencer H
Otros Autores: Schmidmayer, Kevin, Colonius, Tim
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2779277073
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.ijmultiphaseflow.2019.03.028  |2 doi 
035 |a 2779277073 
045 0 |b d20230222 
100 1 |a Bryngelson, Spencer H 
245 1 |a A quantitative comparison of phase-averaged models for bubbly, cavitating flows 
260 |b Cornell University Library, arXiv.org  |c Feb 22, 2023 
513 |a Working Paper 
520 3 |a We compare the computational performance of two modeling approaches for the flow of dilute cavitation bubbles in a liquid. The first approach is a deterministic model, for which bubbles are represented in a Lagrangian framework as advected features, each sampled from a distribution of equilibrium bubble sizes. The dynamic coupling to the liquid phase is modeled through local volume averaging. The second approach is stochastic; ensemble-phase averaging is used to derive mixture-averaged equations and field equations for the associated bubble properties are evolved in an Eulerian reference frame. For polydisperse mixtures, the probability density function of the equilibrium bubble radii is discretized and bubble properties are solved for each representative bin. In both cases, the equations are closed by solving Rayleigh-Plesset-like equations for the bubble dynamics as forced by the local or mixture-averaged pressure, respectively. An acoustically excited dilute bubble screen is used as a case study for comparisons. We show that observables of ensemble- and volume-averaged simulations match closely and that their convergence is first order under grid refinement. Guidelines are established for phase-averaged simulations by comparing the computational costs of methods. The primary costs are shown to be associated with stochastic closure; polydisperse ensemble-averaging requires many samples of the underlying PDF and volume-averaging requires repeated, randomized simulations to accurately represent a homogeneous bubble population. The relative sensitivities of these costs to spatial resolution and bubble void fraction are presented. 
653 |a Liquid phases 
653 |a Grid refinement (mathematics) 
653 |a Computing costs 
653 |a Simulation 
653 |a Probability density functions 
653 |a Mathematical models 
653 |a Mixtures 
653 |a Bubbles 
653 |a Void fraction 
653 |a Cavitation 
653 |a Spatial resolution 
653 |a Dilution 
700 1 |a Schmidmayer, Kevin 
700 1 |a Colonius, Tim 
773 0 |t arXiv.org  |g (Feb 22, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2779277073/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2302.11407