AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Nov 21, 2024), p. n/a
Autor Principal: Nerella, Subhash
Outros autores: Guan, Ziyuan, Siegel, Scott, Zhang, Jiaqing, Zhu, Ruilin, Khezeli, Kia, Bihorac, Azra, Rashidi, Parisa
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2786650048
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2786650048 
045 0 |b d20241121 
100 1 |a Nerella, Subhash 
245 1 |a AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing 
260 |b Cornell University Library, arXiv.org  |c Nov 21, 2024 
513 |a Working Paper 
520 3 |a The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring. Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care. However, the extent of patient monitoring in the ICU is limited due to time constraints and the workload on healthcare providers. Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all. These manual observations are subjective to the individual, prone to documentation errors, and overburden care providers with the additional workload. Artificial Intelligence (AI) enabled systems has the potential to augment the patient visual monitoring and assessment due to their exceptional learning capabilities. Such systems require robust annotated data to train. To this end, we have developed pervasive sensing and data processing system which collects data from multiple modalities depth images, color RGB images, accelerometry, electromyography, sound pressure, and light levels in ICU for developing intelligent monitoring systems for continuous and granular acuity, delirium risk, pain, and mobility assessment. This paper presents the Intelligent Intensive Care Unit (I2CU) system architecture we developed for real-time patient monitoring and visual assessment. 
653 |a Acuity 
653 |a Data processing 
653 |a Computer architecture 
653 |a Color imagery 
653 |a Telemedicine 
653 |a Sound pressure 
653 |a Medical imaging 
653 |a Workload 
653 |a Monitoring 
653 |a Accelerometers 
653 |a Artificial intelligence 
653 |a Workloads 
653 |a Intensive care 
653 |a Light levels 
653 |a Data collection 
700 1 |a Guan, Ziyuan 
700 1 |a Siegel, Scott 
700 1 |a Zhang, Jiaqing 
700 1 |a Zhu, Ruilin 
700 1 |a Khezeli, Kia 
700 1 |a Bihorac, Azra 
700 1 |a Rashidi, Parisa 
773 0 |t arXiv.org  |g (Nov 21, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2786650048/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2303.06252