A Token Classification-Based Attention Model for Extracting Multiple Emotion–Cause Pairs in Conversations

Guardado en:
Bibliografiske detaljer
Udgivet i:Sensors vol. 23, no. 6 (2023), p. 2983
Hovedforfatter: Yoo, Soyeop
Andre forfattere: Jeong, Okran
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2791738229
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s23062983  |2 doi 
035 |a 2791738229 
045 2 |b d20230101  |b d20231231 
084 |a 231630  |2 nlm 
100 1 |a Yoo, Soyeop 
245 1 |a A Token Classification-Based Attention Model for Extracting Multiple Emotion–Cause Pairs in Conversations 
260 |b MDPI AG  |c 2023 
513 |a Journal Article 
520 3 |a People exchange emotions through conversations with others and provide different answers depending on the reasons for their emotions. During a conversation, it is important to find not only such emotions but also their cause. Emotion–cause pair extraction (ECPE) is a task used to determine emotions and their causes in a single pair within a text, and various studies have been conducted to accomplish ECPE tasks. However, existing studies have limitations in that some models conduct the task in two or more steps, whereas others extract only one emotion–cause pair for a given text. We propose a novel methodology for extracting multiple emotion–cause pairs simultaneously from a given conversation with a single model. Our proposed model is a token-classification-based emotion–cause pair extraction model, which applies the BIO (beginning–inside–outside) tagging scheme to efficiently extract multiple emotion–cause pairs in conversations. The proposed model showed the best performance on the RECCON benchmark dataset in comparative experiments with existing studies and was experimentally verified to efficiently extract multiple emotion–cause pairs in conversations. 
653 |a Deep learning 
653 |a Natural language processing 
653 |a Methods 
653 |a Datasets 
653 |a Emotions 
653 |a Verbal communication 
653 |a Classification 
700 1 |a Jeong, Okran 
773 0 |t Sensors  |g vol. 23, no. 6 (2023), p. 2983 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2791738229/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2791738229/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2791738229/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch