An Efficient Online Prediction of Host Workloads Using Pruned GRU Neural Nets

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Apr 25, 2023), p. n/a
Hovedforfatter: Setayesh, Amin
Andre forfattere: Hadian, Hamid, Prodan, Radu
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2792707210
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2792707210 
045 0 |b d20230425 
100 1 |a Setayesh, Amin 
245 1 |a An Efficient Online Prediction of Host Workloads Using Pruned GRU Neural Nets 
260 |b Cornell University Library, arXiv.org  |c Apr 25, 2023 
513 |a Working Paper 
520 3 |a Host load prediction is essential for dynamic resource scaling and job scheduling in a cloud computing environment. In this context, workload prediction is challenging because of several issues. First, it must be accurate to enable precise scheduling decisions. Second, it must be fast to schedule at the right time. Third, a model must be able to account for new patterns of workloads so it can perform well on the latest and old patterns. Not being able to make an accurate and fast prediction or the inability to predict new usage patterns can result in severe outcomes such as service level agreement (SLA) misses. Our research trains a fast model with the ability of online adaptation based on the gated recurrent unit (GRU) to mitigate the mentioned issues. We use a multivariate approach using several features, such as memory usage, CPU usage, disk I/O usage, and disk space, to perform the predictions accurately. Moreover, we predict multiple steps ahead, which is essential for making scheduling decisions in advance. Furthermore, we use two pruning methods: L1 norm and random, to produce a sparse model for faster forecasts. Finally, online learning is used to create a model that can adapt over time to new workload patterns. 
653 |a Resource scheduling 
653 |a Workload 
653 |a Neural networks 
653 |a Workloads 
653 |a Cloud computing 
653 |a Decisions 
700 1 |a Hadian, Hamid 
700 1 |a Prodan, Radu 
773 0 |t arXiv.org  |g (Apr 25, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2792707210/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2303.16601