Architectures of Topological Deep Learning: A Survey of Message-Passing Topological Neural Networks

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Feb 21, 2024), p. n/a
1. Verfasser: Papillon, Mathilde
Weitere Verfasser: Sanborn, Sophia, Hajij, Mustafa, Miolane, Nina
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 2804144353
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2804144353 
045 0 |b d20240221 
100 1 |a Papillon, Mathilde 
245 1 |a Architectures of Topological Deep Learning: A Survey of Message-Passing Topological Neural Networks 
260 |b Cornell University Library, arXiv.org  |c Feb 21, 2024 
513 |a Working Paper 
520 3 |a The natural world is full of complex systems characterized by intricate relations between their components: from social interactions between individuals in a social network to electrostatic interactions between atoms in a protein. Topological Deep Learning (TDL) provides a comprehensive framework to process and extract knowledge from data associated with these systems, such as predicting the social community to which an individual belongs or predicting whether a protein can be a reasonable target for drug development. TDL has demonstrated theoretical and practical advantages that hold the promise of breaking ground in the applied sciences and beyond. However, the rapid growth of the TDL literature for relational systems has also led to a lack of unification in notation and language across message-passing Topological Neural Network (TNN) architectures. This presents a real obstacle for building upon existing works and for deploying message-passing TNNs to new real-world problems. To address this issue, we provide an accessible introduction to TDL for relational systems, and compare the recently published message-passing TNNs using a unified mathematical and graphical notation. Through an intuitive and critical review of the emerging field of TDL, we extract valuable insights into current challenges and exciting opportunities for future development. 
653 |a Complex systems 
653 |a Proteins 
653 |a Deep learning 
653 |a Neural networks 
653 |a Social networks 
653 |a Social factors 
653 |a Topology 
700 1 |a Sanborn, Sophia 
700 1 |a Hajij, Mustafa 
700 1 |a Miolane, Nina 
773 0 |t arXiv.org  |g (Feb 21, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2804144353/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2304.10031