Reconstructing Turbulent Flows Using Physics-Aware Spatio-Temporal Dynamics and Test-Time Refinement

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Dec 12, 2023), p. n/a
Príomhchruthaitheoir: Chen, Shengyu
Rannpháirtithe: Bao, Tianshu, Givi, Peyman, Zheng, Can, Jia, Xiaowei
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 2805741277
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2805741277 
045 0 |b d20231212 
100 1 |a Chen, Shengyu 
245 1 |a Reconstructing Turbulent Flows Using Physics-Aware Spatio-Temporal Dynamics and Test-Time Refinement 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2023 
513 |a Working Paper 
520 3 |a Simulating turbulence is critical for many societally important applications in aerospace engineering, environmental science, the energy industry, and biomedicine. Large eddy simulation (LES) has been widely used as an alternative to direct numerical simulation (DNS) for simulating turbulent flows due to its reduced computational cost. However, LES is unable to capture all of the scales of turbulent transport accurately. Reconstructing DNS from low-resolution LES is critical for many scientific and engineering disciplines, but it poses many challenges to existing super-resolution methods due to the spatio-temporal complexity of turbulent flows. In this work, we propose a new physics-guided neural network for reconstructing the sequential DNS from low-resolution LES data. The proposed method leverages the partial differential equation that underlies the flow dynamics in the design of spatio-temporal model architecture. A degradation-based refinement method is also developed to enforce physical constraints and further reduce the accumulated reconstruction errors over long periods. The results on two different types of turbulent flow data confirm the superiority of the proposed method in reconstructing the high-resolution DNS data and preserving the physical characteristics of flow transport. 
653 |a Domain names 
653 |a Large eddy simulation 
653 |a Turbulent flow 
653 |a Mathematical models 
653 |a Physical properties 
653 |a Partial differential equations 
653 |a Direct numerical simulation 
653 |a Neural networks 
653 |a Fluid dynamics 
653 |a Turbulence 
653 |a Computer simulation 
653 |a Aerospace engineering 
700 1 |a Bao, Tianshu 
700 1 |a Givi, Peyman 
700 1 |a Zheng, Can 
700 1 |a Jia, Xiaowei 
773 0 |t arXiv.org  |g (Dec 12, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2805741277/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2304.12130