Getting More out of Large Language Models for Proofs

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (May 31, 2023), p. n/a
Autor principal: Zhang, Shizhuo Dylan
Otros Autores: Ringer, Talia, First, Emily
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Large language models have the potential to simplify formal theorem proving and make it more accessible. But how to get the most out of these models is still an open question. To answer this question, we take a step back and explore the failure cases of these models using common prompting-based techniques. Our talk will discuss these failure cases and what they can teach us about how to get more out of these models.
ISSN:2331-8422
Fuente:Engineering Database