Numerical Approximation of Stochastic Volterra-Fredholm Integral Equation using Walsh Function
Đã lưu trong:
| Xuất bản năm: | arXiv.org (May 26, 2023), p. n/a |
|---|---|
| Tác giả chính: | |
| Tác giả khác: | , |
| Được phát hành: |
Cornell University Library, arXiv.org
|
| Những chủ đề: | |
| Truy cập trực tuyến: | Citation/Abstract Full text outside of ProQuest |
| Các nhãn: |
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 2820199151 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2331-8422 | ||
| 035 | |a 2820199151 | ||
| 045 | 0 | |b d20230526 | |
| 100 | 1 | |a Prit Pritam Paikaray | |
| 245 | 1 | |a Numerical Approximation of Stochastic Volterra-Fredholm Integral Equation using Walsh Function | |
| 260 | |b Cornell University Library, arXiv.org |c May 26, 2023 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a In this paper, a computational method is developed to find an approximate solution of the stochastic Volterra-Fredholm integral equation using the Walsh function approximation and its operational matrix. Moreover, convergence and error analysis of the method is carried out to strengthen the validity of the method. Furthermore, the method is numerically compared to the block pulse function method and the Haar wavelet method for some non-trivial examples. | |
| 653 | |a Error analysis | ||
| 653 | |a Mathematical analysis | ||
| 653 | |a Walsh function | ||
| 653 | |a Wavelet analysis | ||
| 653 | |a Integral equations | ||
| 653 | |a Fredholm equations | ||
| 653 | |a Approximation | ||
| 700 | 1 | |a Beuria, Sanghamitra | |
| 700 | 1 | |a Parida, Nigam Chandra | |
| 773 | 0 | |t arXiv.org |g (May 26, 2023), p. n/a | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/2820199151/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u http://arxiv.org/abs/2305.16678 |