Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of the Atmospheric Sciences vol. 70, no. 2 (Feb 2013), p. 627
Autor principal: Schemm, Sebastian
Otros Autores: Wernli, Heini, Papritz, Lukas
Publicado:
American Meteorological Society
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2821359515
003 UK-CbPIL
022 |a 0022-4928 
022 |a 1520-0469 
022 |a 0095-9634 
024 7 |a 10.1175/JAS-D-12-0147.1  |2 doi 
035 |a 2821359515 
045 2 |b d20130201  |b d20130228 
084 |a 11543  |2 nlm 
100 1 |a Schemm, Sebastian 
245 1 |a Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations 
260 |b American Meteorological Society  |c Feb 2013 
513 |a Journal Article 
520 3 |a This idealized modeling study of moist baroclinic waves addresses the formation of moist ascending airstreams, so-called warm conveyor belts (WCBs), their characteristics, and their significance for the downstream flow evolution. Baroclinic wave simulations are performed on the f plane, growing from a finite-amplitude upper-level potential vorticity (PV) perturbation on a zonally uniform jet stream. This nonmodal approach allows for dispersive upstream and downstream development and for studying WCBs in the primary cyclone and the downstream cyclone. A saturation adjustment scheme is used as the only difference between the dry and moist simulations, which are systematically compared using a cyclone-tracking algorithm, with an eddy kinetic energy budget analysis, and from a PV perspective. Using trajectories and a selection criterion of maximum ascent, forward- and rearward-sloping WCBs in the moist simulation are identified. No WCB is identified in the dry simulation. Forward-sloping WCBs originate in the warm sector, move into the frontal fracture region, and ascend over the bent-back front, where maximum latent heating occurs in this simulation. The outflow of these WCBs is located at altitudes with prevailing zonal winds; they hence flow anticyclonically (“forward”) into the downstream ridge. In case of a slightly weaker ascent, WCBs curve cyclonically (“rearward”) above the cyclone center. A detailed analysis of the PV evolution along the WCBs reveals PV production in the lower troposphere and destruction in the upper troposphere. Consequently, WCBs transport low-PV air into their outflow region, which contributes to the formation of distinct negative PV anomalies. They, in turn, affect the downstream flow and enhance downstream cyclogenesis. 
651 4 |a Northern Hemisphere 
653 |a Kinetic energy 
653 |a Potential vorticity 
653 |a Saturation 
653 |a Troposphere 
653 |a Outflow 
653 |a Tracking 
653 |a Cyclones 
653 |a Simulation 
653 |a Jet stream 
653 |a Belt conveyors 
653 |a Eddy kinetic energy 
653 |a Ascent 
653 |a Evolution 
653 |a Experiments 
653 |a Baroclinic waves 
653 |a Algorithms 
653 |a Baroclinic flow 
653 |a Cyclogenesis 
653 |a Anomalies 
653 |a Upper troposphere 
653 |a Air currents 
653 |a Energy budget 
653 |a Jet streams (meteorology) 
653 |a Upper level potential vorticity 
653 |a Warm air 
653 |a Vorticity 
653 |a Winds 
653 |a Perturbation 
653 |a Lower troposphere 
653 |a Phase transitions 
653 |a Zonal winds 
653 |a Environmental 
700 1 |a Wernli, Heini 
700 1 |a Papritz, Lukas 
773 0 |t Journal of the Atmospheric Sciences  |g vol. 70, no. 2 (Feb 2013), p. 627 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2821359515/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2821359515/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2821359515/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch