Long-Range Feedback Spiking Network Captures Dynamic and Static Representations of the Visual Cortex under Movie Stimuli

Saved in:
Bibliographic Details
Published in:arXiv.org (Nov 1, 2024), p. n/a
Main Author: Huang, Liwei
Other Authors: Ma, Zhengyu, Yu, Liutao, Zhou, Huihui, Tian, Yonghong
Published:
Cornell University Library, arXiv.org
Subjects:
Online Access:Citation/Abstract
Full text outside of ProQuest
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 2822562719
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2822562719 
045 0 |b d20241101 
100 1 |a Huang, Liwei 
245 1 |a Long-Range Feedback Spiking Network Captures Dynamic and Static Representations of the Visual Cortex under Movie Stimuli 
260 |b Cornell University Library, arXiv.org  |c Nov 1, 2024 
513 |a Working Paper 
520 3 |a Deep neural networks (DNNs) are widely used models for investigating biological visual representations. However, existing DNNs are mostly designed to analyze neural responses to static images, relying on feedforward structures and lacking physiological neuronal mechanisms. There is limited insight into how the visual cortex represents natural movie stimuli that contain context-rich information. To address these problems, this work proposes the long-range feedback spiking network (LoRaFB-SNet), which mimics top-down connections between cortical regions and incorporates spike information processing mechanisms inherent to biological neurons. Taking into account the temporal dependence of representations under movie stimuli, we present Time-Series Representational Similarity Analysis (TSRSA) to measure the similarity between model representations and visual cortical representations of mice. LoRaFB-SNet exhibits the highest level of representational similarity, outperforming other well-known and leading alternatives across various experimental paradigms, especially when representing long movie stimuli. We further conduct experiments to quantify how temporal structures (dynamic information) and static textures (static information) of the movie stimuli influence representational similarity, suggesting that our model benefits from long-range feedback to encode context-dependent representations just like the brain. Altogether, LoRaFB-SNet is highly competent in capturing both dynamic and static representations of the mouse visual cortex and contributes to the understanding of movie processing mechanisms of the visual system. Our codes are available at https://github.com/Grasshlw/SNN-Neural-Similarity-Movie. 
653 |a Image classification 
653 |a Similarity 
653 |a Information processing 
653 |a Data processing 
653 |a Visual stimuli 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Representations 
653 |a Spiking 
653 |a Time series 
700 1 |a Ma, Zhengyu 
700 1 |a Yu, Liutao 
700 1 |a Zhou, Huihui 
700 1 |a Tian, Yonghong 
773 0 |t arXiv.org  |g (Nov 1, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2822562719/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2306.01354