DiffLoad: Uncertainty Quantification in Electrical Load Forecasting with the Diffusion Model

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Sep 2, 2024), p. n/a
Autor principal: Wang, Zhixian
Otros Autores: Wen, Qingsong, Zhang, Chaoli, Sun, Liang, Wang, Yi
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2822565932
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2822565932 
045 0 |b d20240902 
100 1 |a Wang, Zhixian 
245 1 |a DiffLoad: Uncertainty Quantification in Electrical Load Forecasting with the Diffusion Model 
260 |b Cornell University Library, arXiv.org  |c Sep 2, 2024 
513 |a Working Paper 
520 3 |a Electrical load forecasting plays a crucial role in decision-making for power systems, including unit commitment and economic dispatch. The integration of renewable energy sources and the occurrence of external events, such as the COVID-19 pandemic, have rapidly increased uncertainties in load forecasting. The uncertainties in load forecasting can be divided into two types: epistemic uncertainty and aleatoric uncertainty. Separating these types of uncertainties can help decision-makers better understand where and to what extent the uncertainty is, thereby enhancing their confidence in the following decision-making. This paper proposes a diffusion-based Seq2Seq structure to estimate epistemic uncertainty and employs the robust additive Cauchy distribution to estimate aleatoric uncertainty. Our method not only ensures the accuracy of load forecasting but also demonstrates the ability to separate the two types of uncertainties and be applicable to different levels of loads. The relevant code can be found at \url{https://anonymous.4open.science/r/DiffLoad-4714/}. 
653 |a Energy management 
653 |a Outliers (statistics) 
653 |a Electrical loads 
653 |a Unit commitment 
653 |a Neural networks 
653 |a Uncertainty 
653 |a Forecasting 
700 1 |a Wen, Qingsong 
700 1 |a Zhang, Chaoli 
700 1 |a Sun, Liang 
700 1 |a Wang, Yi 
773 0 |t arXiv.org  |g (Sep 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2822565932/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2306.01001