Quantum Phase Estimation by Compressed Sensing

Saved in:
Bibliographic Details
Published in:arXiv.org (Dec 23, 2024), p. n/a
Main Author: Changhao Yi
Other Authors: Zhou, Cunlu, Takahashi, Jun
Published:
Cornell University Library, arXiv.org
Subjects:
Online Access:Citation/Abstract
Full text outside of ProQuest
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 2825306829
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2825306829 
045 0 |b d20241223 
100 1 |a Changhao Yi 
245 1 |a Quantum Phase Estimation by Compressed Sensing 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a As a signal recovery algorithm, compressed sensing is particularly useful when the data has low-complexity and samples are rare, which matches perfectly with the task of quantum phase estimation (QPE). In this work we present a new Heisenberg-limited QPE algorithm for early quantum computers based on compressed sensing. More specifically, given many copies of a proper initial state and queries to some unitary operators, our algorithm is able to recover the frequency with a total runtime \(\mathcal{O}(\epsilon^{-1}\text{poly}\log(\epsilon^{-1}))\), where \(\epsilon\) is the accuracy. Moreover, the maximal runtime satisfies \(T_{\max}\epsilon \ll \pi\), which is comparable to the state of art algorithms, and our algorithm is also robust against certain amount of noise from sampling. We also consider the more general quantum eigenvalue estimation problem (QEEP) and show numerically that the off-grid compressed sensing can be a strong candidate for solving the QEEP. 
653 |a Eigenvalues 
653 |a Algorithms 
653 |a Robustness (mathematics) 
653 |a Quantum computers 
653 |a Signal reconstruction 
653 |a Run time (computers) 
700 1 |a Zhou, Cunlu 
700 1 |a Takahashi, Jun 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2825306829/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2306.07008