Diffusion Models for Open-Vocabulary Segmentation

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:arXiv.org (Sep 30, 2024), p. n/a
Kaituhi matua: Karazija, Laurynas
Ētahi atu kaituhi: Iro Laina, Vedaldi, Andrea, Rupprecht, Christian
I whakaputaina:
Cornell University Library, arXiv.org
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Whakaahuatanga
Whakarāpopotonga:Open-vocabulary segmentation is the task of segmenting anything that can be named in an image. Recently, large-scale vision-language modelling has led to significant advances in open-vocabulary segmentation, but at the cost of gargantuan and increasing training and annotation efforts. Hence, we ask if it is possible to use existing foundation models to synthesise on-demand efficient segmentation algorithms for specific class sets, making them applicable in an open-vocabulary setting without the need to collect further data, annotations or perform training. To that end, we present OVDiff, a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation. OVDiff synthesises support image sets for arbitrary textual categories, creating for each a set of prototypes representative of both the category and its surrounding context (background). It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training. Our approach shows strong performance on a range of benchmarks, obtaining a lead of more than 5% over prior work on PASCAL VOC.
ISSN:2331-8422
Puna:Engineering Database