On Edge Detection Algorithms for Water-Repellent Images of Insulators Taking into Account Efficient Approaches

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 15, no. 7 (2023), p. 1418
Autor principal: Ding, Yizhuo
Otros Autores: Nan, Xiaofei
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2843118032
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym15071418  |2 doi 
035 |a 2843118032 
045 2 |b d20230101  |b d20231231 
084 |a 231635  |2 nlm 
100 1 |a Ding, Yizhuo 
245 1 |a On Edge Detection Algorithms for Water-Repellent Images of Insulators Taking into Account Efficient Approaches 
260 |b MDPI AG  |c 2023 
513 |a Journal Article 
520 3 |a Computer vision has become an essential interdisciplinary field that aims to extract valuable information from digital images or videos. To develop novel concepts in this area, researchers have employed powerful tools from both pure and applied mathematics. Recently, the use of fractional differential equations has gained popularity in practical applications. Moreover, symmetry is a critical concept in digital image processing that can significantly improve edge detection. Investing in symmetry-based techniques, such as the Hough transform and Gabor filter, can enhance the accuracy and robustness of edge detection algorithms. Additionally, CNNs are incredibly useful in leveraging symmetry for image edge detection by identifying symmetrical patterns for improved accuracy. As a result, symmetry reveals promising applications in enhancing image analysis tasks and improving edge detection accuracy. This article focuses on one of the practical aspects of research in computer vision, namely, edge determination in image segmentation for water-repellent images of insulators. The article proposes two general structures for creating fractional masks, which are then calculated using the Atangana–Baleanu–Caputo fractional integral. Numerical simulations are utilized to showcase the performance and effectiveness of the suggested designs. The simulations’ outcomes reveal that the fractional masks proposed in the study exhibit superior accuracy and efficiency compared to various widely used masks documented in the literature. This is a significant achievement of this study, as it introduces new masks that have not been previously used in edge detection algorithms for water-repellent images of insulators. In addition, the computational cost of the suggested fractional masks is equivalent to that of traditional masks. The novel structures employed in this article can serve as suitable and efficient alternative masks for detecting image edges as opposed to the commonly used traditional kernels. Finally, this article sheds light on the potential of fractional differential equations in computer vision research and the benefits of developing new approaches to improve edge detection. 
653 |a Digital imaging 
653 |a Deep learning 
653 |a Mathematical analysis 
653 |a Optimization techniques 
653 |a Insulators 
653 |a Signal processing 
653 |a Symmetry 
653 |a Masks 
653 |a Computer vision 
653 |a Image processing 
653 |a Computer simulation 
653 |a Accuracy 
653 |a Machine learning 
653 |a Image analysis 
653 |a Artificial intelligence 
653 |a Image enhancement 
653 |a Image segmentation 
653 |a Hydrophobicity 
653 |a Gabor filters 
653 |a Applications of mathematics 
653 |a Image retrieval 
653 |a Civil engineering 
653 |a Neural networks 
653 |a Hough transformation 
653 |a Classification 
653 |a Algorithms 
653 |a Fractional calculus 
653 |a Robustness (mathematics) 
653 |a Differential equations 
653 |a Crystallography 
653 |a Edge detection 
700 1 |a Nan, Xiaofei 
773 0 |t Symmetry  |g vol. 15, no. 7 (2023), p. 1418 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2843118032/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2843118032/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2843118032/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch