Online Multi-Task Learning with Recursive Least Squares and Recursive Kernel Methods

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Mar 17, 2024), p. n/a
Autor principal: Lencione, Gabriel R
Otros Autores: Von Zuben, Fernando J
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2847146587
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2847146587 
045 0 |b d20240317 
100 1 |a Lencione, Gabriel R 
245 1 |a Online Multi-Task Learning with Recursive Least Squares and Recursive Kernel Methods 
260 |b Cornell University Library, arXiv.org  |c Mar 17, 2024 
513 |a Working Paper 
520 3 |a This paper introduces two novel approaches for Online Multi-Task Learning (MTL) Regression Problems. We employ a high performance graph-based MTL formulation and develop two alternative recursive versions based on the Weighted Recursive Least Squares (WRLS) and the Online Sparse Least Squares Support Vector Regression (OSLSSVR) strategies. Adopting task-stacking transformations, we demonstrate the existence of a single matrix incorporating the relationship of multiple tasks and providing structural information to be embodied by the MT-WRLS method in its initialization procedure and by the MT-OSLSSVR in its multi-task kernel function. Contrasting the existing literature, which is mostly based on Online Gradient Descent (OGD) or cubic inexact approaches, we achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space (MT-WRLS) or on the size of the dictionary of instances (MT-OSLSSVR). We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study, evidencing the significant gain in performance of both proposed approaches. 
653 |a Learning 
653 |a Support vector machines 
653 |a Kernel functions 
653 |a Least squares 
653 |a Wind speed 
700 1 |a Von Zuben, Fernando J 
773 0 |t arXiv.org  |g (Mar 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2847146587/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2308.01938