Filtering Dynamical Systems Using Observations of Statistics

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Feb 25, 2024), p. n/a
Autor principal: Bach, Eviatar
Otros Autores: Colonius, Tim, Scherl, Isabel, Stuart, Andrew
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2849177696
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1063/5.0171827  |2 doi 
035 |a 2849177696 
045 0 |b d20240225 
100 1 |a Bach, Eviatar 
245 1 |a Filtering Dynamical Systems Using Observations of Statistics 
260 |b Cornell University Library, arXiv.org  |c Feb 25, 2024 
513 |a Working Paper 
520 3 |a We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics. Thus, the computational task is to estimate a time-evolving density \(\rho(v, t)\) given noisy observations of the true density \(\rho^\dagger\); this contrasts with the standard filtering problem based on observations of the state \(v\). The task is naturally formulated as an infinite-dimensional filtering problem in the space of densities \(\rho\). However, for the purposes of tractability, we seek algorithms in state space; specifically, we introduce a mean-field state-space model, and using interacting particle system approximations to this model, we propose an ensemble method. We refer to the resulting methodology as the ensemble Fokker-Planck filter (EnFPF). Under certain restrictive assumptions, we show that the EnFPF approximates the Kalman-Bucy filter for the Fokker-Planck equation, which is the exact solution to the infinite-dimensional filtering problem. Furthermore, our numerical experiments show that the methodology is useful beyond this restrictive setting. Specifically, the experiments show that the EnFPF is able to correct ensemble statistics, to accelerate convergence to the invariant density for autonomous systems, and to accelerate convergence to time-dependent invariant densities for non-autonomous systems. We discuss possible applications of the EnFPF to climate ensembles and to turbulence modeling. 
653 |a Exact solutions 
653 |a Algorithms 
653 |a Time dependence 
653 |a Fokker-Planck equation 
653 |a Convergence 
653 |a Invariants 
653 |a Dynamical systems 
653 |a Density 
653 |a Filtration 
653 |a Statistics 
653 |a State space models 
700 1 |a Colonius, Tim 
700 1 |a Scherl, Isabel 
700 1 |a Stuart, Andrew 
773 0 |t arXiv.org  |g (Feb 25, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2849177696/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2308.05484