Practical Parallel Algorithms for Non-Monotone Submodular Maximization

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Dec 3, 2024), p. n/a
Yazar: Cui, Shuang
Diğer Yazarlar: Han, Kai, Tang, Jing, Li, Xueying, Zhiyuli, Aakas, Li, Hanxiao
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2854680615
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2854680615 
045 0 |b d20241203 
100 1 |a Cui, Shuang 
245 1 |a Practical Parallel Algorithms for Non-Monotone Submodular Maximization 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2024 
513 |a Working Paper 
520 3 |a Submodular maximization has found extensive applications in various domains within the field of artificial intelligence, including but not limited to machine learning, computer vision, and natural language processing. With the increasing size of datasets in these domains, there is a pressing need to develop efficient and parallelizable algorithms for submodular maximization. One measure of the parallelizability of a submodular maximization algorithm is its adaptive complexity, which indicates the number of sequential rounds where a polynomial number of queries to the objective function can be executed in parallel. In this paper, we study the problem of non-monotone submodular maximization subject to a knapsack constraint, and propose the first combinatorial algorithm achieving an \((8+\epsilon)\)-approximation under \(\mathcal{O}(\log n)\) adaptive complexity, which is \textit{optimal} up to a factor of \(\mathcal{O}(\log\log n)\). Moreover, we also propose the first algorithm with both provable approximation ratio and sublinear adaptive complexity for the problem of non-monotone submodular maximization subject to a \(k\)-system constraint. As a by-product, we show that our two algorithms can also be applied to the special case of submodular maximization subject to a cardinality constraint, and achieve performance bounds comparable with those of state-of-the-art algorithms. Finally, the effectiveness of our approach is demonstrated by extensive experiments on real-world applications. 
653 |a Parallel processing 
653 |a Mathematical analysis 
653 |a Artificial intelligence 
653 |a Combinatorial analysis 
653 |a Optimization 
653 |a Polynomials 
653 |a Approximation 
653 |a Computer vision 
653 |a Maximization 
653 |a Algorithms 
653 |a Complexity 
653 |a Machine learning 
653 |a Natural language processing 
653 |a Adaptive algorithms 
700 1 |a Han, Kai 
700 1 |a Tang, Jing 
700 1 |a Li, Xueying 
700 1 |a Zhiyuli, Aakas 
700 1 |a Li, Hanxiao 
773 0 |t arXiv.org  |g (Dec 3, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2854680615/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2308.10656