Fully adaptive structure-preserving hyper-reduction of parametric Hamiltonian systems

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Sep 27, 2024), p. n/a
Autor principal: Pagliantini, Cecilia
Otros Autores: Vismara, Federico
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2859742925
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2859742925 
045 0 |b d20240927 
100 1 |a Pagliantini, Cecilia 
245 1 |a Fully adaptive structure-preserving hyper-reduction of parametric Hamiltonian systems 
260 |b Cornell University Library, arXiv.org  |c Sep 27, 2024 
513 |a Working Paper 
520 3 |a Model order reduction provides low-complexity high-fidelity surrogate models that allow rapid and accurate solutions of parametric differential equations. The development of reduced order models for parametric \emph{nonlinear} Hamiltonian systems is challenged by several factors: (i) the geometric structure encoding the physical properties of the dynamics; (ii) the slowly decaying Kolmogorov \(n\)-width of conservative dynamics; (iii) the gradient structure of the nonlinear flow velocity; (iv) high variations in the numerical rank of the state as a function of time and parameters. We propose to address these aspects via a structure-preserving adaptive approach that combines symplectic dynamical low-rank approximation with adaptive gradient-preserving hyper-reduction and parameters sampling. Additionally, we propose to vary in time the dimensions of both the reduced basis space and the hyper-reduction space by monitoring the quality of the reduced solution via an error indicator related to the projection error of the Hamiltonian vector field. The resulting adaptive hyper-reduced models preserve the geometric structure of the Hamiltonian flow, do not rely on prior information on the dynamics, and can be solved at a cost that is linear in the dimension of the full order model and linear in the number of test parameters. Numerical experiments demonstrate the improved performances of the fully adaptive models compared to the original and reduced models. 
653 |a Mathematical models 
653 |a Reduced order models 
653 |a Physical properties 
653 |a Fields (mathematics) 
653 |a Nonlinear systems 
653 |a Differential equations 
653 |a Flow velocity 
653 |a Model reduction 
653 |a Adaptive sampling 
653 |a Parameters 
653 |a Smart structures 
653 |a Hamiltonian functions 
700 1 |a Vismara, Federico 
773 0 |t arXiv.org  |g (Sep 27, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2859742925/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2308.16547