ICML 2023 Topological Deep Learning Challenge : Design and Results

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jan 18, 2024), p. n/a
Autor principal: Papillon, Mathilde
Otros Autores: Hajij, Mustafa, Jenne, Helen, Mathe, Johan, Myers, Audun, Papamarkou, Theodore, Birdal, Tolga, Dey, Tamal, Doster, Tim, Emerson, Tegan, Gopalakrishnan, Gurusankar, Govil, Devendra, Guzmán-Sáenz, Aldo, Kvinge, Henry, Livesay, Neal, Mukherjee, Soham, Samaga, Shreyas N, Karthikeyan Natesan Ramamurthy, Maneel Reddy Karri, Rosen, Paul, Sanborn, Sophia, Walters, Robin, Agerberg, Jens, Barikbin, Sadrodin, Battiloro, Claudio, Bazhenov, Gleb, Bernardez, Guillermo, Brent, Aiden, Escalera, Sergio, Fiorellino, Simone, Gavrilev, Dmitrii, Hassanin, Mohammed, Häusner, Paul, Odin Hoff Gardaa, Abdelwahed Khamis, Lecha, Manuel, Magai, German, Malygina, Tatiana, Ballester, Rubén, Nadimpalli, Kalyan, Nikitin, Alexander, Rabinowitz, Abraham, Salatiello, Alessandro, Scardapane, Simone, Scofano, Luca, Singh, Suraj, Sjölund, Jens, Snopov, Pavel, Spinelli, Indro, Telyatnikov, Lev, Testa, Lucia, Yang, Maosheng, Yue, Yixiao, Zaghen, Olga, Zia, Ali, Miolane, Nina
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.
ISSN:2331-8422
DOI:10.5281/zenodo.7958513
Fuente:Engineering Database