Quadratic Detection in Noncoherent Massive SIMO Systems over Correlated Channels

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jun 18, 2024), p. n/a
Autor principal: Vilà-Insa, Marc
Altres autors: Aniol Martí, Riba, Jaume, Lamarca, Meritxell
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2869801258
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/TWC.2024.3411164  |2 doi 
035 |a 2869801258 
045 0 |b d20240618 
100 1 |a Vilà-Insa, Marc 
245 1 |a Quadratic Detection in Noncoherent Massive SIMO Systems over Correlated Channels 
260 |b Cornell University Library, arXiv.org  |c Jun 18, 2024 
513 |a Working Paper 
520 3 |a With the goal of enabling ultrareliable and low-latency wireless communications for industrial internet of things (IIoT), this paper studies the use of energy-based modulations in noncoherent massive single-input multiple-output (SIMO) systems. We consider a one-shot communication over a channel with correlated Rayleigh fading and colored Gaussian noise, in which the receiver has statistical channel state information (CSI). We first provide a theoretical analysis on the limitations of unipolar pulse-amplitude modulation (PAM) in systems of this kind, based on maximum likelihood detection. The existence of a fundamental error floor at high signal-to-noise ratio (SNR) regimes is proved for constellations with more than two energy levels, when no (statistical) CSI is available at the transmitter. In the main body of the paper, we present a design framework for quadratic detectors that generalizes the widely-used energy detector, to better exploit the statistical knowledge of the channel. This allows us to design receivers optimized according to information-theoretic criteria that exhibit lower error rates at moderate and high SNR. We subsequently derive an analytic approximation for the error probability of a general class of quadratic detectors in the large array regime. Finally, we numerically validate it and discuss the outage probability of the system. 
653 |a Detectors 
653 |a Wireless communications 
653 |a Sensors 
653 |a Network latency 
653 |a Industrial applications 
653 |a Random noise 
653 |a Error analysis 
653 |a Codes 
653 |a Information theory 
653 |a Pulse amplitude modulation 
653 |a Design optimization 
653 |a Energy consumption 
653 |a Statistical analysis 
653 |a Signal to noise ratio 
653 |a Energy levels 
653 |a Industrial Internet of Things 
700 1 |a Aniol Martí 
700 1 |a Riba, Jaume 
700 1 |a Lamarca, Meritxell 
773 0 |t arXiv.org  |g (Jun 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2869801258/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2309.15030