Robust Blockwise Random Pivoting: Fast and Accurate Adaptive Interpolative Decomposition

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 19, 2024), p. n/a
Autor principal: Dong, Yijun
Otros Autores: Chen, Chao, Martinsson, Per-Gunnar, Pearce, Katherine
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2870189021
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2870189021 
045 0 |b d20241219 
100 1 |a Dong, Yijun 
245 1 |a Robust Blockwise Random Pivoting: Fast and Accurate Adaptive Interpolative Decomposition 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a The interpolative decomposition (ID) aims to construct a low-rank approximation formed by a basis consisting of row/column skeletons in the original matrix and a corresponding interpolation matrix. This work explores fast and accurate ID algorithms from comprehensive perspectives for empirical performance, including accuracy in both skeleton selection and interpolation matrix construction, efficiency in terms of asymptotic complexity and hardware efficiency, as well as rank adaptiveness. While many algorithms have been developed to optimize some of these aspects, practical ID algorithms proficient in all aspects remain absent. To fill in the gap, we introduce robust blockwise random pivoting (RBRP) that is asymptotically fast, hardware-efficient, and rank-adaptive, providing accurate skeletons and interpolation matrices comparable to the best existing ID algorithms in practice. Through extensive numerical experiments on various synthetic and natural datasets, we demonstrate the appealing empirical performance of RBRP from the aforementioned perspectives, as well as the robustness of RBRP to adversarial inputs. 
653 |a Parallel processing 
653 |a Tolerances 
653 |a Mathematical analysis 
653 |a Matrices (mathematics) 
653 |a Interpolation 
653 |a Optimization 
653 |a Approximation 
653 |a Algorithms 
653 |a Asymptotic properties 
653 |a Robustness (mathematics) 
653 |a Complexity 
653 |a Error detection 
653 |a Decomposition 
700 1 |a Chen, Chao 
700 1 |a Martinsson, Per-Gunnar 
700 1 |a Pearce, Katherine 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2870189021/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2309.16002