Analyzing The Strength Between Mission And Vision Statements And Industry Via Machine Learning

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Applied Business Research vol. 36, no. 3 (May/Jun 2020), p. 121
Autor principal: Alshameri, Faleh
Otros Autores: Green, Nathan
Publicado:
Knowledge and Leadership Alliance
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2875544921
003 UK-CbPIL
022 |a 0892-7626 
022 |a 2157-8834 
035 |a 2875544921 
045 2 |b d20200501  |b d20200630 
084 |a 12637  |2 nlm 
100 1 |a Alshameri, Faleh  |u Marymount University, USA 
245 1 |a Analyzing The Strength Between Mission And Vision Statements And Industry Via Machine Learning 
260 |b Knowledge and Leadership Alliance  |c May/Jun 2020 
513 |a Journal Article 
520 3 |a Mission and vision statements are critical to a company's success both from a company's long-term goals and appearance to potential customers. We a+nalyze a collection of 772 mission and vision statements from companies via natural language processing. This data is hand annotated into 15 industry types. We show the distinctiveness and connectiveness of each industry via text processing and machine learning techniques. The extracted features of each industry are a telling and guiding indicator of what that industry embraces. We show high predictive power via machine learning to determine an industry by looking only at the mission and vision statements. 
653 |a Distinctiveness 
653 |a Customers 
653 |a Machine learning 
653 |a Big Data 
653 |a Software 
653 |a Strategic management 
653 |a Mission statements 
653 |a Datasets 
653 |a Query expansion 
653 |a Data mining 
653 |a Employees 
653 |a Algorithms 
653 |a Clustering 
653 |a Strategic planning 
653 |a Employee behavior 
653 |a Word processing 
653 |a Companies 
653 |a Data processing 
653 |a Natural language processing 
653 |a Consumers 
700 1 |a Green, Nathan  |u Marymount University, USA 
773 0 |t Journal of Applied Business Research  |g vol. 36, no. 3 (May/Jun 2020), p. 121 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2875544921/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2875544921/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch