Quality of Service-Constrained Online Routing in High Throughput Satellites

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (May 31, 2024), p. n/a
Hovedforfatter: Bélanger, Olivier
Andre forfattere: Olfa Ben Yahia, Martel, Stéphane, Lesage-Landry, Antoine, Gunes Karabulut Kurt
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2876193971
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2876193971 
045 0 |b d20240531 
100 1 |a Bélanger, Olivier 
245 1 |a Quality of Service-Constrained Online Routing in High Throughput Satellites 
260 |b Cornell University Library, arXiv.org  |c May 31, 2024 
513 |a Working Paper 
520 3 |a High throughput satellites (HTSs) outpace traditional satellites due to their multi-beam transmission. The rise of low Earth orbit mega constellations amplifies HTS data rate demands to terabits/second with acceptable latency. This surge in data rate necessitates multiple modems, often exceeding single device capabilities. Consequently, satellites employ several processors, forming a complex packet-switch network. This can lead to potential internal congestion and challenges in adhering to strict quality of service (QoS) constraints. While significant research exists on constellation-level routing, a literature gap remains on the internal routing within a single HTS. The intricacy of this internal network architecture presents a significant challenge to achieve high data rates. This paper introduces an online optimal flow allocation and scheduling method for HTSs. The problem is presented as a multi-commodity flow instance with different priority data streams. An initial full time horizon model is proposed as a benchmark. We apply a model predictive control (MPC) approach to enable adaptive routing based on current information and the forecast within the prediction time horizon while allowing for deviation of the latter. Importantly, MPC is inherently suited to handle uncertainty in incoming flows. Our approach minimizes the packet loss by optimally and adaptively managing the priority queue schedulers and flow exchanges between satellite processing modules. Central to our method is a routing model focusing on optimal priority scheduling to enhance data rates and maintain QoS. The model's stages are critically evaluated, and results are compared to traditional methods via numerical simulations. Through simulations, our method demonstrates performance nearly on par with the hindsight optimum, showcasing its efficiency and adaptability in addressing satellite communication challenges. 
653 |a Satellite communications 
653 |a Computer architecture 
653 |a Quality of service architectures 
653 |a Modems 
653 |a Optimization 
653 |a Network latency 
653 |a Predictive control 
653 |a Adaptive control 
653 |a Data transmission 
653 |a Mathematical models 
653 |a Quality of service 
653 |a Constraints 
653 |a Numerical methods 
653 |a Low earth orbits 
653 |a Priority scheduling 
700 1 |a Olfa Ben Yahia 
700 1 |a Martel, Stéphane 
700 1 |a Lesage-Landry, Antoine 
700 1 |a Gunes Karabulut Kurt 
773 0 |t arXiv.org  |g (May 31, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2876193971/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2310.07557